Helium atom From optical pumping to B.E.C.

Claude Cohen-Tannoudji

Inauguration meeting and Celebration of Lev Pitaevskii's 70th birthday

Trento, 14/03/03

1

Helium atom

- A simple atom, the simplest one after Hydrogen High resolution sectroscopy. Tests of QED
- Two isotopes

He₃ Fermion $I = \frac{1}{2}$ He₄ Boson I = 0

 Small mass → Large de Broglie wavelength Large zero-point energy

Purpose of this lecture

Present a brief survey of studies performed on Helium atoms, starting from optical pumping of He_3 and ending with B.E.C. of He_4 in the metastable triplet state

NUCLEAR POLARIZATION OF ³He BY OPTICAL PUMPING

Laser manipulation of Helium

Not easy because the first excited state is the metastable state 2 ${}^{3}S_{1}$ lying 20 eV above the ground state 1 ${}^{1}S_{0}$

It is however possible to populate the long lived 2 ${}^{3}S_{1}$ state by a discharge and to use the 2 ${}^{3}S_{1} \rightarrow 2 \, {}^{3}P_{0,1,2}$ transition at 1083 nm for manipulating both isotopes of Helium

Polarizing the nuclear spins of He₃ by optical pumping

Possibility to optically pump the long lived 2 ${}^{3}S_{1}$ state by using the 2 ${}^{3}S_{1} \rightarrow 2 \, {}^{3}P_{0,1,2}$ transitions at 1080 nm In this state, the nuclei become polarized by interacting with the polarized electrons (through hyperfine coupling)

In a collision between two Helium atoms, one in 2 ${}^{3}S_{1}$, one in 1 ${}^{1}S_{0}$, the metastability can be transferred from the first atom to the second one

The collision time is so short that the nuclear magnetic moment does not evolve during the collision and remains polarized while the electronic cloud jumps from 2 ${}^{3}S_{1}$ to 1 ${}^{1}S_{0}$ (F. Colegrove, L. Shearer, K. Walters 1963)

A. Kastler was considering this method as an « Extension of Franck-Condon principle to nuclear spins » High degrees of nuclear polarization (up to 85%)

Nuclear relaxation times

Nuclear magnetic moments are small \rightarrow Weak magnetic couplings

The He₃ nucleus has a spin $\frac{1}{2}$

- \rightarrow No quadrupole moment
- \rightarrow No electric coupling with the electric field gradients

As a consequence, nuclear relaxation times are very long The T_1 relaxation time can reach 5 days in a glass cell with a Cesium coating!

Example of earlier studies

Detection of the static magnetic field produced at a macroscopic distance by polarized He_3 nuclei using the « Hanle effect » in the ground state of Rb_{87}

Hanle zero-field level crossing resonance in the ground state of Rb₈₇

SI Magnetometer with a sensitivity of 5×10^{-10} Gauss 0 Manuly BRUIT (sensibilité X 100) J. Dupont-Roc, S. Haroche, 2 0 ġ. 1 Ho(µG) C. Cohen-Tannoudji, Phys. Lett. <u>28A</u>, 638 (1969) 2×10-9 G temps

2

0 1

3

(mn)

Magnetostatic detection of the static magnetic field produced by polarized He₃ nuclei

C. Cohen-Tannoudji, J. Dupont-Roc, S. Haroche, F. Laloë Phys. Rev. Lett. <u>22</u>, 758 (1971) Present state of the art

Nuclear polarization

N. Bigelow, P- J. Nacher, M. Leduc J. de Physique, II <u>2</u>, 2159 (1992)

W. Heil, H. Humblot, E. Otten, M. Schafer, R. Surkau, M. Leduc Phys. Lett. <u>A201</u>, 337 (1995)

MRI Images of the Human Chest

Proton-MRI ³He-MRI

Duke Univ., CAMRD http://camrd4.mc.duke.edu/ (1997)

Human lung MRI centres :

- Princeton
- Mainz U., Paris-Orsay, Nottingham U
- Duke U., U. of Virginia, U. of Pennsylvania
- Boston B&W H., St Louis About 10 more centres getting started
- 10

SPIN POLARIZED ³He A DILUTE QUANTUM FLUID

Spin-polarized He₃ A dilute quantum gas

Two spin-polarized He_3 atoms in the ground state cannot collide in a s-wave

Their minimum distance of approach is given by the de Broglie wavelength $\lambda_{dB} = h / mv$

This is <u>not</u> due to spin-spin interactions (which are extremely small), but this is a consequence of <u>Fermi statistics</u>

At low enough temperatures, λ_{dB} becomes larger than the range of the atom-atom interaction potential, and the polarized gas behaves as a perfect gas

Theoretical investigation of these effects

C. Lhuillier, F. Laloë J. de Physique, <u>40</u>, 239 (1979) J. de Physique, <u>43</u>, 127 and 225 (1982) SPOQS meetings

Prediction of a modification of the transport properties of the polarized gas (thermal conductivity, viscosity)

Collective oscillatory modes for the spin degrees of freedom (spin waves)

More recent development

Inefficiency of evaporative cooling for laser cooled, magnetically trapped Fermionic gases

Example of experimental investigation

Modification of the thermal conductivity of a spin-polarized He₃ gas

M. Leduc, P-J. Nacher, D. Betts, J. Daniels, G. Tastevin, F. Laloë Europhys. Lett. <u>4</u>, 59 (1987)

SUBRECOIL LASER COOLING OF ⁴He

Pure 3-level Λ -system leading to coherent population trapping

The detuning from Raman resonance is provided by the Doppler effect which is opposite for the 2 counterpropagating waves « Velocity Selective Coherent Population Trapping » (VSCPT)

Subrecoil laser cooling by VSCPT

Inhomogeneous random walk in velocity space with a jump rate R_F vanishing at zero velocity where atoms pile up

No lower limit to the velocity spread which can be achieved

A.Aspect, E.Arimondo, R.Kaiser, N.Vansteenkiste, C.Cohen-Tannoudji, Phys.Rev.Lett. <u>61</u>, 826 (1988)

First experimental observation of subrecoil cooling

A.Aspect, E.Arimondo, R.Kaiser, N.Vansteenkiste, C.Cohen-Tannoudji, Phys.Rev.Lett. <u>61</u>, 826 (1988)

Adiabatic transfer of atoms into a single peak

Switching off adiabatically one of the laser beams

Analogy with STIRAP

Extension to 2 dimensions

Theory : M. Olshanii

S.Kulin, B.Saubamea, E.Peik, J.Lawall, T.Hijmans, M.Leduc, C.Cohen-Tannoudji, Phys.Rev.Lett. <u>78</u>, 4185 (1997)

Extension to 3 dimensions

Coherent manipulation of atomic wave packets in the nK range

S.Kulin, B.Saubamea, E.Peik, J.Lawall, T.Hijmans, M.Leduc, C.Cohen-Tannoudji, Phys.Rev.Lett. <u>78</u>, 4185 (1997)

François Bardou, Jean-Philippe Bouchaud, Alain Aspect & Claude Cohen-Tannoudji

CAMBRIDGE

Momentum distribution of He₄ atoms cooled in the nK range

Comparison with theoretical calculations based on Lévy statistics and predicting non ergodic effects

23

BOSE-EINSTEIN CONDENSATION OF METASTABLE ⁴He

Penning collisions for He^{*}

```
\begin{split} \text{He}^*(2\ {}^3\text{S}_1) + \text{He}^*(2\ {}^3\text{S}_1) \rightarrow \text{He}\ (1\ {}^1\text{S}_0) + \text{He}^+ + \text{e}^- \\ & \rightarrow (\text{He}_2)^+ + \text{e}^- \end{split}
```

The energy of the 2 $^3\mathrm{S}_1$ state is about 20 eV above the ground state

Penning cross-sections have huge cross-sections which, at first sight, should prevent any Bose-Einstein condensation in this state

<u>But</u>, He^{*} atoms are spin-polarized in a magnetic trap, and the conservation of the total spin is expected to dramatically reduce the Penning cross-section

Quenching of Penning collisions in a spin-polarized sample

 $\begin{array}{rll} \text{He}^*(2\ {}^3\text{S}_1) \ + \ \text{He}^*(2\ {}^3\text{S}_1) \ \to \ \text{He}\ (1\ {}^1\text{S}_0) \ + \ \text{He}^+ \ + \ e^- \\ \text{S=1, M=1} & \text{S=1, M=1} & \text{S=0} & \text{S=1/2} & \text{S=1/2} \end{array}$

The total spin is equal to 2 before the collision and to 1 or 0 after the collision. It cannot be conserved.

But this conservation law is not strict. Spin-spin dipole couplings during the collision can slightly mix states with different values of the total spin

The net effect is that Penning collisions are expected to be reduced by 5 orders of magnitude when the sample is spin-polarized

G. Shlyapnikov, J. Walraven, U. Rahmanov, W. Reynolds, Phys. Rev. Lett. <u>73</u>, 3247 (1994)

Bose-Einstein condensation of metastable helium IOTA - Orsay

A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. Westbrook, A. Aspect, Science, <u>292</u>, 461 (2001)

Bose-Einstein condensation of metastable helium ENS -Paris

F. Pereira Dos Santos, J. Léonard, J. Wang, C. Barrelet,
F. Perales, E. Rasel, C. Unnikrishnan, M. Leduc,
C. Cohen-Tannoudji, Phys. Rev. Lett. <u>86</u>, 3459 (2001)

Ballistic expansion of the condensate

Inversion of the ellipticity Clear signature of the condensation

F. Pereira Dos Santos, J. Léonard, J. Wang, C. Barrelet,
F. Perales, E. Rasel, C. Unnikrishnan, M. Leduc,
C. Cohen-Tannoudji, Phys. Rev. Lett. <u>86</u>, 3459 (2001)

A few perspectives

- -Condensate of atoms having a high internal energy Atom lasers Atom lithography
- Possibility to detect the atoms one by one Atom statistics Higher order correlation functions
- Large collision cross-sections
 Investigation of collisional processes (2-body, 3-body)
 Hydrodynamic regime
- Photo-association
 - Molecules with 2 metastable atoms?
- ⁴He ³He mixtures

Long distance potential curves

A. Mosk

Investigation by the Amsterdam-Utrecht groups of a few molecular states formed by one-color photo-association below the frequency of the $2 {}^{3}S_{1} \rightarrow 2 {}^{3}P_{2}$ transition lon detection PRL <u>84</u>, 1874 (2000)

In Paris, we study the molecular states in the potential O_u^+ which depends only on long distance interactions

- Pure long range molecular potential
- Detection by the losses of the atomic cloud

J. Leonard A. Mosk M. Walhout T. Müller M. Leduc C. C-T

Pure long range molecules in the well O_u^+

Laser diode continuouly tuned over 3 nm with temperature

33

2nd Generation of experiments « Accurate » frequency measurement

- Instead of using a large frequency scan, we lock the PA laser on the atomic line and we detune it with AOM's
 <300 kHz absolute accuracy
- We correct for the Zeeman shift (magnetic trap) and for the temperature shift

	tabulated C ₃	1% change in C ₃	Experiment
v=4, J=1	18.4	$\pm 0.5~{ m MHz}$	18.4 ± 0.3
v=3, J=1	80.4	$\pm ~1.4~\mathrm{MHz}$	80.1 ± 0.3
v=2, J=1	255.3	$\pm~2.5~\mathrm{MHz}$	soon
v=1, J=1	653.5	\pm 3.3 MHz	soon
v=0, J=1	1428.0	$\pm~2.5~\mathrm{MHz}$	XXX

Preliminary results

Hope to improve the determination of C₃