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1. how to detect BCS transition in Fermi gases ?

*Umklapp collisions and oscillations of a trapped Fermi gas, PRL 2004

*Sound propagation and oscillations of a superfluid Fermi gas in a 1D
optical lattice, PRA 2005

2. two-body problem 1n optical lattices

*Formation of molecules near a Feshbach resonance in 1D optical lattice,
PRL 2005

*Two-body problem in periodic potentials, PRA 2006
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1D tight optical lattice + weak harmonic trapping
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Kohn's theorem does not apply

Question: what happens in

interacting Fermi gases ?

collisional regime: oscillations Killed by umklapp collisions
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superfluid phase: persistent Josephson oscillations

why ? phonons protected by energy gap

Can write hydrodynamic equations as for BEC.

Ingredients: effective mass and compressibility (from BCS theory)

Quasi-momentum
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distribution
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eff. mass is density dependent. Recover BEC limit fore <47

BEC: no(k)=n5(k)—>1/m[;=1/m*

*study of dynamical instability
PRA 2005 .
*application to trapped gases



Bound states 1n 1D optical lattice

v

ext

no confinement
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s laser intensity, £ =

in x-y directions
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recoil energy, d lattice spacing (0.1-1 um)

interparticle interactions modeled via s-wave pseudopotential
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1
e.g. harmonic potential V (r)=—mw’r’

ext 2

COM separates

vV (F)+V _(7)=V_(R)+V (7) — w=¢_ (R)¢ (F)

center-of-mass coordinate

Binding energy given by algebraic equation
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Green function for relative motion



what about optical lattices ?  e.g. 1D lattice
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vV (2)+V (2)#V  (Z)+V (2)
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c.0.m. and relative
motion coupled

Solution via 2-particle Green's function

w(F,2)=[dz'G (7,2;0,2)g-2(r'w(7',2") .

or' =0

Binding energy given by integral equation in COM variable

Y(Z)=g| dZ'K (Z,2)Y(Z")
A

““\
regular kernel




K E(Z ,Z') invariant under quasi-momentum

Z—-7Z+d

1S conserved

solutions are Bloch states  f Q(Z +d )ZeiQdf

COM and relative motion | binding energy depends

coupled on quasi-momentum

For given Q, integral equation has been solved

*numerically PRL 2005
*analytically (tight-binding) PRA 2006



Binding energy versus inverse scattering length

dots: lattice as

perturbation
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dla_ binding energy vanishes



Critical value of scattering length




Regimes 1n tight 1D optical lattices
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*bound state spread over many lattice sites 21 2

*binding energy takes universal form ‘E b‘ ~— |
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g¢— ¢gC renormalization of coupling constant



Regimes 1n tight 1D optical lattices

€g>>‘Eb‘>>4t

quasi-2D regime

ﬂ dimensional

crossover

e(q.)
4t ° [ ®
\\ / ‘ Eb‘ <4 anisotropic 3D regime
9.
3D regime
*bound state spread over many lattice sites 52
*binding energy takes universal form ‘E b‘ -
m

g¢— ¢gC renormalization of coupling constant



quasi-2D regime

*tunneling 1s irrelevant: effective harmonic oscillator
0

*binding energy approaches asymptotic value
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BCS transition in 1D optical lattice

QUESTION: how is Tc modified by 1D lattice ?
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effective coupling constant for Cooper pairs

related to 2-body scattering amplitude
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Scattering

E)=a| dZ¢_(0,Z)0 7.z
amplitude f.lE) af ¢,(0.2)0 (ry(7,Z)), _,
7
P (r Z): (qu(zl)(b_q <Z2) incident 2-particle state
¢q (z) Bloch states
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Tight-binding solution

1 —z2

ansatz: Y(Z)NAZl_wz(Z—jd) W(Z):Trum)a(l/z) exp[zo_z]

Wannier state
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B(E) describes dimensional crossover

B =i arccos(1- E/4t)  (E<8t)

B=—log[E(1+\V1—8¢/E) I8¢|+i (E>8t)




anisotropic 3D regime | f (E) ¢

(E <« 8t) l/a—1la_+iCNEm/h

shift of Feshbach resonance
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A7 845~ Cg e.g. dilute BEC 1n optical lattices
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lattice enters through effective mass and coupling constant



C
quasi-2D regime f SC(E)Zl N
(69
(E > 8t) —+ In +iTT
A=029 @ V2mo| B
p 1 m 1_|_ 1 lnP\hw 4
u=>4at — -
gy 4mhCla N2mo 20 (14\1—4s/p)

density dependent

change in behaviour occurs exactly at p=4t



Results for transition temperature
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Gorkov's corrections

Gorkov's corrections reduce mean field result 7 C/ TS<1
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Superfluid-Mott Insulator QPT

°zero temperature

*discs are finite size and tunneling is weak

Question: what is critical tunneling
- rate for transition to Mott phase ?

)Y
<D HYDRODYNAMIC APPROACH (N 3>1)

1n each disc relevant variables are

- N =N+AN  number of atoms
) J

b : phase of order parameter
J
Quantum phase model H,,= (E [2)A N —E cos(® +1—¢j)
[A N r d5j] =1

E  charging energy E Josephson energy



E <081E, superfluid
E >081FE, Mott insulator

Bradley-Doniach, PRB (1984)

Complete analogy with BEC: E =2 L
° N

...but Josephson term is different !

BCS supertluid weakly interacting BEC
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Cooper pairs E =—N single atom £ =t N
EF
EF tB ~ L
[ ~— c 0
c N N




Question: can this QPT be achieved with cold gases ?

Answer: only 1f critical tunneling rate large compared to

atom loss rate due to 3-body recombination

Ultracold gases

* BEC: NO, unless N~1-5

* BCS superfluids: YES, up to N~10’-10"

3-body losses quenched

by Fermi statistics




Conclusions

*sumklapp collisions in Fermi gases

spropagation of sound in superfluid Fermi gases

® two-body problem

*BCS transition temperature

*Superfluid-Mott insulator QPT in Fermi superfluids
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