Exploring the width of Feshbach resonances in ⁶Li-⁴⁰K mixtures

Tobias Tiecke, Antje Ludewig, Steve Gensemer, Sebastian Kraft and Jook Walraven Van der Waals – Zeeman Institute, University of Amsterdam Maikel Goosen and Servaas Kokkemans Eindhoven Technical University Financial support: FOM programme *Quantum Gases*, German DAAD

Combines the possibilities of the ⁶Li and ⁴⁰K systems with new properties of the mixture:

- Long-range mediated interactions $(1/r^2)$
- Unconventional pairing of fermions
 - unequal mass $(m_1 \neq m_2)$
 - mediated pairing (Efimov)
 - formation of long-lived heteronuclear (dipolar) molecules
- Important analogies with solid-state physics (optical lattices)
 - strongly-interacting superfluids (high-Tc and quark-gluon plasma)
 - quantum magnetism (magnetic order, Kondo problem,...)
- Precision determination of molecular potentials

We search for a *large tunable scattering length* (we focus on Feshbach tunable resonance)

Degeneracy in Fermi gases first observed in 1999 at JILA in $^{\rm 40}{\rm K}$

- Feshbach phenomenology
- Asymptotic Bound-state Model (ABM)
- Experimental
- Width measurement
- Comparison with new ABM-results
- Conclusion

Feshbach phenomenology

- Asymptotic Bound-state Model (ABM)
- Experimental
- Width measurement
- Comparison with new ABM-results
- Conclusion

scattering: length scales

Van der Waals range: $r_0 \simeq \left(2\mu C_6/\hbar^2\right)^{1/4}$

dilute limit: $nr_0^3 \ll 1$ ultracold: $kr_0 \ll 1$ hyperfine radius: $r_{\rm hf}$ exc. phase shift: $k \cot \eta_0 = -\frac{1}{a} + \frac{1}{2}k^2r_e$ $f_0 = \frac{1}{k \cot \eta_0 - ik}$ $\sigma = 4\pi \frac{1}{k^2 \cot \eta_0 + k^2}$

Feshbach scattering length

Trento 3 June 2009

on resonance ($a \rightarrow \infty$): unitarity limited scattering ($\sigma = \frac{4\pi}{k^2}$)

for $a_{bg} \neq 0$ asymmetric line shape: Fano profile

- Feshbach phenomenology
- Asymptotic Bound-state Model (ABM)
- Experimental
- Width measurement
- Comparison with new ABM-results
- Conclusion

ABM-analysis

Asymptotic Bound-state Model (ABM) for analysis of Feshbach resonances

$$\begin{aligned} \mathcal{H} &= \mathcal{H}_{\rm rel} + \mathcal{H}_Z + \mathcal{H}_{\rm hf}^+ + \mathcal{H}_{\rm hf}^- \\ \hline \mathbf{conserving} \quad \mathbf{exchanging} \\ \mathbf{S} &= \mathbf{s}_1 + \mathbf{s}_2 \end{aligned}$$
$$\mathcal{H}_Z &= \gamma_e \mathbf{S} \cdot \mathbf{B} - \gamma_1 \mathbf{i}_1 \cdot \mathbf{B} - \gamma_2 \mathbf{i}_2 \cdot \mathbf{B} \\ \mathcal{H}_{\rm rel} &= \frac{p_r^2}{2\mu} + \frac{l\left(l+1\right)\hbar^2}{2\mu r^2} + V_s(r) + J(r)S \\ \mathcal{H}_{\rm hf} &= \left(a_{\rm hf1}/\hbar^2\right) \mathbf{i}_1 \cdot \mathbf{s}_1 + \left(a_{\rm hf2}/\hbar^2\right) \mathbf{i}_2 \cdot \mathbf{s}_2 \end{aligned}$$

diagonalize hamiltonian for given l and M_F

diagonalization in singlet-triplet basis

$$\left| \langle S', M'_{S}, m'_{1}, m'_{2} | \langle R_{l}^{S'} | \mathcal{H} - E \left| R_{l}^{S} \right\rangle | S, M_{S}, m_{1}, m_{2} \rangle \right| = 0.$$

$$\left| l_{v'} \langle S', M'_{S}, m'_{1}, m'_{2} | \mathcal{H}_{Z} + \mathcal{H}_{hf} + \varepsilon_{v,l}^{S} - E | S, M_{S}, m_{1}, m_{2} \rangle_{l,v} \right| = 0$$

$$\mathcal{H}_{hf}^{+} + \langle R_{v',l}^{S'} | R_{v,l}^{S} \rangle \mathcal{H}_{hf}^{-}$$

$$= 1$$

binding energies of ABM states in singlet and triplet potentials used as fitting parameters

hyperfine structures

special for mixtures with ⁴⁰K:

inverted hyperfine structure makes mixture *stable against spin-exchange losses* if one component is in the lowest hyperfine state

ABM analysis will be discussed for case $M_F = -3$

free atoms: ⁶Li $|F = 1/2, m_F = +1/2 > 40$ K $|F = 9/2, m_F = -7/2 > 10$

free atoms: ⁶Li $|F = 1/2, m_F = +1/2 > 40$ K $|F = 9/2, m_F = -7/2 > 10$

E. Wille et al., Phys. Rev. Lett. 100 (2008) 053201

Relative 40K atom number

background scattering length

from fit: binding energies of last bound states:

CC detailed potential

singlet: $E_0/h = 716(15) \text{ MHz}$ $a_s = 52.1(3) a_0$ triplet: $E_1/h = 425(5) \text{ MHz}$ $a_t = 63.5(1) a_0$ ABM $r_0 = 41 a_0$

--- scattering length a_s and a_t non-resonant

 $ka_s \ll 1$ and $ka_t \ll 1 \rightarrow s$ -wave scattering amplitudes: $f_0 = -\frac{a_s}{a_t}$

degenerate internal states (DIS) approximation for scattering wavefunction¹:

$$\psi_k(r) \underset{r \to \infty}{\sim} e^{ikz} + \left[f_t + (f_s - f_t) \sum_{IM_I} |\langle 00IM_I | h_1 h_2)|^2 \right] \frac{e^{ikr}}{r}$$

- background scattering length $a_s < a_{bg} < a_t$

$$a_{bg}$$
 non-resonant for any $/h_1h_2 > ---$ for any field ⁹⁸⁸⁾

Recap

$$s_{res} = \frac{a_{bg}\mu_{\rm rel}\Delta_B}{r_0\left(\hbar^2/2\mu r_0^2\right)}$$

• a_{bg} obtained from fit to Feshbach positions • μ_{rel} obtained from ABM model • ΔB to be measured

Trento 3 June 2009

Trento 3 June 2009

- Feshbach phenomenology
- Asymptotic Bound-state Model (ABM)
- Experimental
- Width measurement
- Comparison with new ABM-results
- Conclusion

Experiment

Evaporative cooling/Plug trap

Plug beam imposes an effective B_0 . P=7W, w_0 =16 μ m

Therefore we can clean the K spin mixture by MW evaporation 'inside' the plug.

MT sympathetic cooling

Sypathetically cool Li by spin mixture of K instead of both stretched Li: |3/2,+3/2> K: |9/2,+9/2> & |9/2,+7/2> & |9/2,+5/2>

3-fold degenerate ⁴⁰K

state cleaning at low field

hfs-state cleaning of ⁴⁰K mixture:

⁶Li transferred from |3/2,+3/2> to |1/2,+1/2> by an adiabatic passage around 10G Remaining F=3/2 atoms removed by resonant light

Clean and state prepared low density sample: 2x10⁴ ⁴⁰K in |F=9/2,mF=+9/2> 4x10³ ⁶Li in |F=1/2,mF=+1/2>

Trento 3 June 2009

- Feshbach phenomenology
- Asymptotic Bound-state Model (ABM)
- Experimental
- Width measurement
- Comparison with new ABM-results
- Conclusion

adiabatic expansion gaussian trap induces evaporation:

⁶Li: 4000 atoms, $n_0 = 4 \times 10^9 \text{ cm}^{-3}$ $(\eta_{\text{Li}} \simeq 2.7)$ ⁴⁰K: 20000 atoms, $n_0 = 8 \times 10^{10} \text{ cm}^{-3} (\eta_{\text{K}} \simeq 6.2)$ $T = 9 \ \mu \text{K}$

Li-K collisions induce Li evaporation no three-body losses

 $\eta = U/k_B T$

evaporative losses

⁴⁰K losses:

background gas dominated lifetime τ_{vac} = 25 s

⁶Li evaporation induced by ⁴⁰K

 $\tau_{ev}^{-1} \simeq n_{\rm K} \langle \sigma v_{rel} \rangle e^{-\eta_{\rm Li}}$ $n_{\rm K}(t) = n_{\rm K}(0) e^{-t/\tau_{vac}}$

no ⁶Li evaporation without ⁴⁰K

⁶Li atoms left after holding time *t* :

$$N_{\rm Li} = N_0 \exp(-t/\tau_{ev}) \exp(-t/\tau_{vac})$$

E. Tiemann et al., Phys. Rev. A 79, 042716 (2009)

- Feshbach phenomenology
- Asymptotic Bound-state Model (ABM)
- Experimental
- Width measurement
- Comparison with new ABM-results
- Conclusion

- First direct determination of the width of a Feshbach resonance in ⁶Li-⁴⁰K mixture
- Position determined 114.45 G with an accuracy of 50 mG limitations of BO-approximation visible?
- Strength parameter s_{res} = 0.013 for width of Δ_B = 1.0(3) G
- Unlikely to find much larger values of s_{res} at any resonance
- Universal behavior only for E << 1 μ K
- Observation of superfluidity will be challenging
- Mediated interactions can be observed
- (be aware of other mechanisms to manipulate interactions)

Thanks

With theory support from: Gora Shlyapnikov, Dima Petrov UvA colleages: Klaasjan van Druten, Robert Spreeuw, Tom Hijmans, Ben vLvdH.