Theory of radio-frequency spectroscopy of ultracold Fermi atoms

G.C. Strinati

Dipartimento di Fisica, Università di Camerino (Italy)
"FerMix 2009 Meeting"
Trento (Italy), 3-5 June 2009

References:

[1] A. Perali, P. Pieri, and G.C. Strinati, Phys. Rev. Lett. 100, 010402 (2008): "Competition between final state and pairing gap effects in the radio-frequency spectra of ultracold Fermi atoms"
[2] P. Pieri, A. Perali, and G.C. Strinati, preprint at http://arxiv.org/abs/0811.0770:
"Enhanced paraconductivity-like fluctuations in the radio frequency spectra of ultracold Fermi atoms"
[above T_{c}]

Original motivation (from experiments):

Original motivation (from experiments):

Jin (2003), Grimm (2004), Ketterle (2003-2008)

Original motivation (from experiments):

Jin (2003), Grimm (2004), Ketterle (2003-2008) Atomic $\left({ }^{6} \mathrm{Li},{ }^{40} \mathrm{~K}\right)$ energy levels in a magnetic field:

Original motivation (from experiments):

Jin (2003), Grimm (2004), Ketterle (2003-2008) Atomic $\left({ }^{6} \mathrm{Li},{ }^{40} \mathrm{~K}\right)$ energy levels in a magnetic field:

Original Innsbruck-Grimm data $\left({ }^{6} \mathrm{Li}\right)$:

From Fig. 1 of C. Chin et al., Science 305, 1128 (2004):

Questions:

Questions:

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_{c}, pseudo-gap above T_{c}, \cdots) ?

Questions:

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_{c}, pseudo-gap above T_{c}, \cdots) ?

No interaction:

$$
h \nu=\varepsilon_{3}-\varepsilon_{2}
$$

Questions:

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_{c}, pseudo-gap above T_{c}, \cdots) ?

No interaction:

$$
h \nu=\varepsilon_{3}-\varepsilon_{2}
$$

$\mid 1>$ and $\mid 2>$ interact: $\quad h \nu \neq \varepsilon_{3}-\varepsilon_{2} \quad$ (pairing)

Questions:

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_{c}, pseudo-gap above T_{c}, \cdots) ?

No interaction:

$$
h \nu=\varepsilon_{3}-\varepsilon_{2}
$$

$\mid 1>$ and $\mid 2>$ interact: $\quad h \nu \neq \varepsilon_{3}-\varepsilon_{2} \quad$ (pairing)
$\mid 1>$ and $\mid 3>$ interact:
(final-state effects)

Questions:

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_{c}, pseudo-gap above T_{c}, \cdots) ?

No interaction:

$$
h \nu=\varepsilon_{3}-\varepsilon_{2}
$$

$\mid 1>$ and $\mid 2>$ interact: $\quad h \nu \neq \varepsilon_{3}-\varepsilon_{2} \quad$ (pairing)
$\mid 1>$ and $\mid 3>$ interact: (final-state effects)
2) To what extent final-state effects affect the RF spectra?

Learning from the molecular calculation (Chin \& Julienne - 2005):

Learning from the molecular calculation (Chin \& Julienne - 2005):

When $a_{f}=0 \Longrightarrow$ RF spectrum \propto density of final states $\times \mid$ FT of initial wave function $\left.\right|^{2}$

Learning from the molecular calculation (Chin \& Julienne - 2005):

When $a_{f}=0 \Longrightarrow$ RF spectrum \propto density of final states $\times \mid$ FT of initial wave function $\left.\right|^{2}$

Learning from the molecular calculation (Chin \& Julienne - 2005):

When $a_{f}=0 \Longrightarrow$ RF spectrum \propto density of final states $\times \mid$ FT of initial wave function $\left.\right|^{2}$

\Longrightarrow extract binding energy from threshold \& bound-state radius from width of half-maximum

When $a_{f} \neq 0 \Longrightarrow$ RF spectrum:

When $a_{f} \neq 0 \Longrightarrow$ RF spectrum:

When $a_{f} \neq 0 \Longrightarrow$ RF spectrum:

Piles up at threshold

When $a_{f} \neq 0 \Longrightarrow$ RF spectrum:

Piles up at threshold
Tail decays faster

When $a_{f} \neq 0 \Longrightarrow$ RF spectrum:

Piles up at threshold

Tail decays faster Bound peak (.|.) appears

When $a_{f} \neq 0 \Longrightarrow$ RF spectrum:

Analogy with Excitonic Effect in Semiconductors:

Analogy with Excitonic Effect in Semiconductors:

Analogy with Excitonic Effect in
 Semiconductors:

Analogy with Excitonic Effect in
 Semiconductors:

\Longrightarrow competition between finite-gap (\longrightarrow) and excitonic (\longleftarrow) effects !

Characteristics of molecular spectra:

Characteristics of molecular spectra:

$\Longrightarrow \quad$ suggestion: when a_{f} is sufficiently $\neq a_{i}$

Characteristics of molecular spectra:

suggestion : when a_{f} is sufficiently $\neq a_{i}$

- The position of the bound peak recedes away from threshold
- A frequency window opens up in the continuum, where the spectrum "resembles" the one with $a_{f}=0$!
- A frequency window opens up in the continuum, where the spectrum "resembles" the one with $a_{f}=0$!

Single molecule \Rightarrow many-body system:

Single molecule \Rightarrow many-body system:

Question: How does one extend the molecular calculation to finite density n and temperature T ?

Single molecule \Rightarrow many-body system:

Question: How does one extend the molecular calculation to finite density n and temperature T ? In this case, by varying a_{i} across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

Single molecule \Rightarrow many-body system:

Question: How does one extend the molecular calculation to finite density n and temperature T ? In this case, by varying a_{i} across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

$$
a_{i}<0, k_{F}\left|a_{i}\right| \lesssim 1
$$

Single molecule \Rightarrow many-body system:

Question: How does one extend the molecular calculation to finite density n and temperature T ? In this case, by varying a_{i} across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

$$
a_{i}<0, k_{F}\left|a_{i}\right| \lesssim 1
$$

BCS limit of
Cooper pairs

Single molecule \Rightarrow many-body system:

Question: How does one extend the molecular calculation to finite density n and temperature T ? In this case, by varying a_{i} across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

$$
a_{i}<0, k_{F}\left|a_{i}\right| \lesssim 1
$$

$$
0<a_{i}, k_{F} a_{i} \lesssim 1
$$

BCS limit of
Cooper pairs

Single molecule \Rightarrow many-body system:

Question: How does one extend the molecular calculation to finite density n and temperature T ? In this case, by varying a_{i} across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:
$a_{i}<0, k_{F}\left|a_{i}\right| \lesssim 1$
BCS limit of
Cooper pairs
$0<a_{i}, k_{F} a_{i} \lesssim 1$
BEC limit of composite bosons

Single molecule \Rightarrow many-body system:

Question: How does one extend the molecular calculation to finite density n and temperature T ? In this case, by varying a_{i} across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:
$a_{i}<0, k_{F}\left|a_{i}\right| \lesssim 1$
BCS limit of
Cooper pairs

$$
0<a_{i}, k_{F} a_{i} \lesssim 1
$$

BEC limit of composite bosons
($k_{F}=$ Fermi wave vector related to n)

Single molecule \Rightarrow many-body system:

Question: How does one extend the molecular calculation to finite density n and temperature T ? In this case, by varying a_{i} across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

$$
a_{i}<0, k_{F}\left|a_{i}\right| \lesssim 1
$$

BCS limit of
Cooper pairs

$$
0<a_{i}, k_{F} a_{i} \lesssim 1
$$

BEC limit of composite bosons
($k_{F}=$ Fermi wave vector related to n)

$$
\begin{array}{llll}
-1.0 & 0.0 & 1.0 & \left(\mathbf{k}_{\mathbf{F}} \mathbf{a}_{\mathbf{i}}\right)^{-\mathbf{1}}
\end{array}
$$

Recovering the molecular RF spectra from the many-body RF spectra:

In BEC limit, the many-body RF spectrum $I_{N}(\omega)$ is related to molecular RF spectrum $I_{0}(\omega)$ as follows:

Recovering the molecular RF spectra from the many-body RF spectra:

In BEC limit, the many-body RF spectrum $I_{N}(\omega)$ is related to molecular RF spectrum $I_{0}(\omega)$ as follows:
$I_{N}(\omega)=N_{\text {mol }} I_{0}(\omega) \quad\left(N_{\text {mol }}=\right.$ number of molecules $)$

Recovering the molecular RF spectra from the many-body RF spectra:

In BEC limit, the many-body RF spectrum $I_{N}(\omega)$ is related to molecular RF spectrum $I_{0}(\omega)$ as follows:
$I_{N}(\omega)=N_{\text {mol }} I_{0}(\omega) \quad\left(N_{\text {mol }}=\right.$ number of molecules $)$
For the many-body system, $N_{\text {mol }}$ is obtained as:

Recovering the molecular RF spectra from the many-body RF spectra:

In BEC limit, the many-body RF spectrum $I_{N}(\omega)$ is related to molecular RF spectrum $I_{0}(\omega)$ as follows:
$I_{N}(\omega)=N_{\text {mol }} I_{0}(\omega) \quad\left(N_{\text {mol }}=\right.$ number of molecules $)$
For the many-body system, $N_{\text {mol }}$ is obtained as:

$$
N_{\mathrm{mol}} \approx N_{0} \text { (condensate) for } T \ll T_{c}
$$

Recovering the molecular RF spectra from the many-body RF spectra:

In BEC limit, the many-body RF spectrum $I_{N}(\omega)$ is related to molecular RF spectrum $I_{0}(\omega)$ as follows:
$I_{N}(\omega)=N_{\text {mol }} I_{0}(\omega) \quad\left(N_{\text {mol }}=\right.$ number of molecules $)$
For the many-body system, $N_{\text {mol }}$ is obtained as:

$$
N_{\mathrm{mol}} \approx N_{0} \text { (condensate) for } T \ll T_{c}
$$

$$
N_{\mathrm{mol}} \approx N^{\prime}(\text { non }- \text { condensate }) \text { for } T \approx T_{c}
$$

Recovering the molecular RF spectra from the many-body RF spectra:

In BEC limit, the many-body RF spectrum $I_{N}(\omega)$ is related to molecular RF spectrum $I_{0}(\omega)$ as follows:
$I_{N}(\omega)=N_{\text {mol }} I_{0}(\omega) \quad\left(N_{\text {mol }}=\right.$ number of molecules $)$
For the many-body system, $N_{\text {mol }}$ is obtained as:

$$
N_{\mathrm{mol}} \approx N_{0} \text { (condensate) for } T \ll T_{c}
$$

$$
N_{\mathrm{mol}} \approx N^{\prime}(\text { non }- \text { condensate }) \text { for } T \approx T_{c}
$$

\Rightarrow different "many-body diagrams" are expected to be important in the two temperature regimes !

Use this as a criterion to "classify" the theory work on many-body RF spectra:

Use this as a criterion to "classify" the theory work on many-body RF spectra:

Group (year)	a_{i}	a_{f}	N_{0}	N^{N}
Törma (2004)	yes	no	yes	no
Griffin (2005)	yes	no	yes	no
Levin (2005)	yes	no	yes	no
Bruun \& Stoof (2008)	yes	no	no	yes
Yu \& Baym (2006)	yes	yes	yes	no
Strinati (2008)	yes	yes	yes	no
Mueller (2008)	yes	yes	yes	no
Levin (2009)	yes	yes	yes	no
Strinati (2009)	yes	yes	no	yes

Experimental coupling plane for ${ }^{6} \mathrm{Li}$:

The system Hamiltonian $\left({ }^{6} \mathrm{Li}\right)$:

Deal with "broad" Fano-Feshbach resonances.

The system Hamiltonian $\left({ }^{6} \mathrm{Li}\right)$:

Deal with "broad" Fano-Feshbach resonances.

- Bare contact interaction v_{12} between spins " 1 " and " 2 " \Rightarrow regularize it via the scattering length $a_{12} \leftrightarrow a_{i}$ (initial-state effects)

The system Hamiltonian $\left({ }^{6} \mathrm{Li}\right)$:

Deal with "broad" Fano-Feshbach resonances.

- Bare contact interaction v_{12} between spins " 1 " and " 2 " \Rightarrow regularize it via the scattering length $a_{12} \leftrightarrow a_{i}$ (initial-state effects)
- Bare contact interaction v_{13} between spins " 1 " and " 3 " \Rightarrow regularize it via the scattering length $a_{13} \leftrightarrow a_{f}$ (final-state effects)

The system Hamiltonian $\left({ }^{6} \mathrm{Li}\right)$:

Deal with "broad" Fano-Feshbach resonances.

- Bare contact interaction v_{12} between spins " 1 " and " 2 " \Rightarrow regularize it via the scattering length $a_{12} \leftrightarrow a_{i}$ (initial-state effects)
- Bare contact interaction v_{13} between spins " 1 " and " 3 " \Rightarrow regularize it via the scattering length $a_{13} \leftrightarrow a_{f}$ (final-state effects)
- Bohr frequency $\omega_{32}=\varepsilon_{3}-\varepsilon_{2}$ between "bare" atomic levels 3 and 2

The system Hamiltonian $\left({ }^{6} \mathrm{Li}\right)$:

Deal with "broad" Fano-Feshbach resonances.

- Bare contact interaction v_{12} between spins " 1 " and " 2 " \Rightarrow regularize it via the scattering length $a_{12} \leftrightarrow a_{i}$ (initial-state effects)
- Bare contact interaction v_{13} between spins " 1 " and " 3 " \Rightarrow regularize it via the scattering length $a_{13} \leftrightarrow a_{f}$ (final-state effects)
- Bohr frequency $\omega_{32}=\varepsilon_{3}-\varepsilon_{2}$ between "bare" atomic levels 3 and 2
- Two chemical potentials:
$\mu \leftrightarrow$ common to spins " 1 " and " 2 " $\quad\left(N_{1}=N_{2}\right)$
$\mu_{3} \leftrightarrow \operatorname{spin} " 3 "\left(N_{3}=0\right)$

What does an RF experiment measure?

What does an RF experiment measure?

$\frac{d N_{3}(t)}{d t}$ as induced by the perturbing Hamiltonian:

$$
H^{\prime}(t)=\gamma \int d \mathbf{r} e^{i\left(\mathbf{q}_{R F} \cdot \boldsymbol{r}-\omega_{R F} t\right)} \psi_{3}^{\dagger}(\mathbf{r}) \psi_{2}(\mathbf{r})+\text { h.c. }
$$

$\mathbf{q}_{R F} \approx 0$ and $\omega_{R F}=$ frequency of RF radiation.

What does an RF experiment measure?

$\frac{d N_{3}(t)}{d t}$ as induced by the perturbing Hamiltonian:

$$
H^{\prime}(t)=\gamma \int d \mathbf{r} e^{i\left(\mathbf{q}_{R F} \cdot \mathbf{r}-\omega_{R F} t\right)} \psi_{3}^{\dagger}(\mathbf{r}) \psi_{2}(\mathbf{r})+\text { h.c. }
$$

$\mathbf{q}_{R F} \approx 0$ and $\omega_{R F}=$ frequency of RF radiation.
$\frac{d N_{3}(t)}{d t}$ is related to the current operator:

$$
\begin{aligned}
I(t) & =i\left[H^{\prime}(t), N_{3}\right] \\
& =-i \gamma \int d \mathbf{r} e^{i\left(\mathbf{q}_{R F} \cdot \mathbf{r}-\omega_{R F} t\right)} \psi_{3}^{\dagger}(\mathbf{r}) \psi_{2}(\mathbf{r})+\text { h.c. }
\end{aligned}
$$

Within linear-response theory ...

Within linear-response theory ...

\ldots one ends up with the (retarded $\leftrightarrow R$) spin-flip correlation function:

$$
\Pi^{R}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t-t^{\prime}\right)=-i \theta\left(t-t^{\prime}\right)\left\langle\left[B(\mathbf{r}, t), B^{\dagger}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right]\right\rangle
$$

where $B(\mathbf{r}, t)=e^{i K t} \psi_{2}^{\dagger}(\mathbf{r}) \psi_{3}(\mathbf{r}) e^{-i K t}$

Within linear-response theory ...

\ldots one ends up with the (retarded $\leftrightarrow R$) spin-flip correlation function:

$$
\Pi^{R}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t-t^{\prime}\right)=-i \theta\left(t-t^{\prime}\right)\left\langle\left[B(\mathbf{r}, t), B^{\dagger}\left(\mathbf{r}^{\prime}, t^{\prime}\right)\right]\right\rangle
$$

where $B(\mathbf{r}, t)=e^{i K t} \psi_{2}^{\dagger}(\mathbf{r}) \psi_{3}(\mathbf{r}) e^{-i K t}$
the RF spectrum is given by

$$
I\left(\omega_{t h}\right)=-2 \gamma^{2} \int d \mathbf{r} d \mathbf{r}^{\prime} \operatorname{Im}\left\{\Pi^{R}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega_{t h}\right)\right\}
$$

where $\omega_{\text {th }}=\omega_{R F}+\mu-\mu_{3}$ is a "theoretical" detuning frequency.

Connection with the diagrammatic PT:

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

Connection with the diagrammatic PT:

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

$$
\begin{aligned}
& \Pi\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega_{\nu}\right)=\int_{0}^{\beta} d \tau e^{i \omega_{\nu} \tau} \\
& \times\left\langle T_{\tau}\left[\psi_{2}\left(\mathbf{r}^{\prime}, 0\right) \psi_{2}^{\dagger}\left(\mathbf{r}^{\prime}, \tau^{+}\right) \psi_{3}(\mathbf{r}, \tau) \psi_{3}^{\dagger}\left(\mathbf{r}^{\prime}, 0^{+}\right)\right]\right\rangle
\end{aligned}
$$

Connection with the diagrammatic PT:

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

$$
\begin{aligned}
& \Pi\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega_{\nu}\right)=\int_{0}^{\beta} d \tau e^{i \omega_{\nu} \tau} \\
& \times\left\langle T_{\tau}\left[\psi_{2}\left(\mathbf{r}^{\prime}, 0\right) \psi_{2}^{\dagger}\left(\mathbf{r}^{\prime}, \tau^{+}\right) \psi_{3}(\mathbf{r}, \tau) \psi_{3}^{\dagger}\left(\mathbf{r}^{\prime}, 0^{+}\right)\right]\right\rangle
\end{aligned}
$$

where $\omega_{\nu}=2 \pi \nu / \beta \quad\left[\nu\right.$ integer and $\left.\beta=\left(k_{B} T\right)^{-1}\right]$ and $T_{\tau}=$ imaginary time-ordering operator

Connection with the diagrammatic PT:

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

$$
\begin{aligned}
& \Pi\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega_{\nu}\right)=\int_{0}^{\beta} d \tau e^{i \omega_{\nu} \tau} \\
& \times\left\langle T_{\tau}\left[\psi_{2}\left(\mathbf{r}^{\prime}, 0\right) \psi_{2}^{\dagger}\left(\mathbf{r}^{\prime}, \tau^{+}\right) \psi_{3}(\mathbf{r}, \tau) \psi_{3}^{\dagger}\left(\mathbf{r}^{\prime}, 0^{+}\right)\right]\right\rangle
\end{aligned}
$$

where $\omega_{\nu}=2 \pi \nu / \beta \quad\left[\nu\right.$ integer and $\left.\beta=\left(k_{B} T\right)^{-1}\right]$ and $T_{\tau}=$ imaginary time-ordering operator analytic continuation in the complex $\omega_{\text {th }}$-plane.

Connection with the diagrammatic PT:

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

$$
\begin{aligned}
& \Pi\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega_{\nu}\right)=\int_{0}^{\beta} d \tau e^{i \omega_{\nu} \tau} \\
& \times\left\langle T_{\tau}\left[\psi_{2}\left(\mathbf{r}^{\prime}, 0\right) \psi_{2}^{\dagger}\left(\mathbf{r}^{\prime}, \tau^{+}\right) \psi_{3}(\mathbf{r}, \tau) \psi_{3}^{\dagger}\left(\mathbf{r}^{\prime}, 0^{+}\right)\right]\right\rangle
\end{aligned}
$$

where $\omega_{\nu}=2 \pi \nu / \beta \quad\left[\nu\right.$ integer and $\left.\beta=\left(k_{B} T\right)^{-1}\right]$ and $T_{\tau}=$ imaginary time-ordering operator analytic continuation in the complex $\omega_{\text {th }}$-plane.
A quite difficult part of the whole story !
(\leftrightarrow sometimes recourse to Padé approximants)

Hierarchy of approximations below T_{C} :

Hierarchy of approximations below T_{c} :

$$
a_{i}=0, a_{f}=0 \Longrightarrow \text { non-interacting atoms }
$$

Hierarchy of approximations below T_{c} :

$a_{i}=0, a_{f}=0 \Longrightarrow$ non-interacting atoms

RF spectrum is a delta spike at $\omega_{R F}=\omega_{32}$

Hierarchy of approximations below T_{c} :

$a_{i}=0, a_{f}=0 \Longrightarrow$ non-interacting atoms
RF spectrum is a delta spike at $\omega_{R F}=\omega_{32}$ take this as the "reference frequency" \Longrightarrow $\omega_{\exp }=\omega_{R F}-\omega_{32}$

Hierarchy of approximations below T_{c} :

$a_{i}=0, a_{f}=0 \Longrightarrow$ non-interacting atoms
RF spectrum is a delta spike at $\omega_{R F}=\omega_{32}$
take this as the "reference frequency" \Longrightarrow
$\omega_{\exp }=\omega_{R F}-\omega_{32}$
$a_{i} \neq 0, a_{f}=0 \Longrightarrow$ atom in initial state " 2 " correlates with its mate in " 1 " within the BCS approximation

Hierarchy of approximations below T_{c} :

$a_{i}=0, a_{f}=0 \Longrightarrow$ non-interacting atoms
RF spectrum is a delta spike at $\omega_{R F}=\omega_{32}$
take this as the "reference frequency" \Longrightarrow
$\omega_{\exp }=\omega_{R F}-\omega_{32}$
$a_{i} \neq 0, a_{f}=0 \Longrightarrow$ atom in initial state " 2 " correlates with its mate in " 1 " within the BCS approximation $\Longrightarrow R F$ spectrum is obtained from the BCS bubble

BCS \& BCS-RPA diagrams below T_{c} :

RF spectrum from BCS bubble at $T=0$:

Hierarchy of approximations below T_{c} : (II)

$$
a_{i} \neq 0, a_{f} \neq 0 \Longrightarrow \text { in addition, atom in }
$$

Hierarchy of approximations below T_{c} : (II)

$a_{i} \neq 0, a_{f} \neq 0 \Longrightarrow$ in addition, atom in
final state " 3 " interacts with atom left behind in state " 1 "

Hierarchy of approximations below T_{c} : (II)

$a_{i} \neq 0, a_{f} \neq 0 \Longrightarrow$ in addition, atom in
final state " 3 " interacts with atom left behind in state " 1 " \Longrightarrow the RF spectrum is obtained from the BCS-RPA series

Hierarchy of approximations below T_{c} : (II)

$a_{i} \neq 0, a_{f} \neq 0 \Longrightarrow$ in addition, atom in
final state " 3 " interacts with atom left behind in state " 1 " \Longrightarrow the RF spectrum is obtained from the BCS-RPA series

- In both cases (BCS \& BCS-RPA), in the BEC limit we get:

$$
N_{\mathrm{mol}} \leftrightarrow N_{0}=\text { Volume } \times\left(\frac{m^{2} a_{i}}{8 \pi}\right) \Delta_{B C S}^{2}
$$

RF spectrum from BCS-RPA at $T=0$:

BCS-RPA vs BCS at $\mathrm{T}=0$

Comparison with experiments below T_{c} :

$$
\begin{aligned}
& \left(k_{F} a_{i}\right)^{-1}=0 \quad\left(k_{F} a_{f}\right)^{-1}=-1.32 \quad T \lesssim 0.5 T_{c} \\
& {[\text { Exp. data: Fig.2(d) of PRL 99, } 090403(2007)]}
\end{aligned}
$$

When a_{f} is quite different from a_{i} :

When a_{f} is quite different from a_{i} :

- "Pair size" from width of half-maximum [Ketterle \& al., Nature 454, 739 (2008)]

When a_{f} is quite different from a_{i} :

- "Pair size" from width of half-maximum [Ketterle \& al., Nature 454, 739 (2008)]
- Energy scale $\Delta_{B C S}$ (or Δ_{∞} - see below) from "intermediate-frequency plateau"

Hierarchy of approximations above T_{c} :

The self-energy $\Sigma(k)$ with "pairing fluctuations" plays a crucial role

Hierarchy of approximations above T_{c} :

The self-energy $\Sigma(k)$ with "pairing fluctuations" plays a crucial role \Longrightarrow for atoms " 2 " interacting with atoms " 1 "

$$
\Sigma_{2}(k)=-\int d q \Gamma_{21}(q) \mathcal{G}_{1}(q-k)
$$

Hierarchy of approximations above T_{c} :

The self-energy $\Sigma(k)$ with "pairing fluctuations" plays a crucial role \Longrightarrow for atoms " 2 " interacting with atoms " 1 "

$$
\Sigma_{2}(k)=-\int d q \Gamma_{21}(q) \mathcal{G}_{1}(q-k)
$$

$$
a_{i} \neq 0, a_{f}=0
$$

Hierarchy of approximations above T_{c} :

The self-energy $\Sigma(k)$ with "pairing fluctuations" plays a crucial role \Longrightarrow for atoms " 2 " interacting with atoms " 1 "

$$
\Sigma_{2}(k)=-\int d q \Gamma_{21}(q) \mathcal{G}_{1}(q-k)
$$

- $a_{i} \neq 0, a_{f}=0 \Longrightarrow$ RF spectrum is obtained from the DOS (density-of-states) diagram

DOS \& AL diagrams above T_{c} :

(a)

DOS
(b)

AL
(c)

Hierarchy of approximations above T_{c} : (II)

Hierarchy of approximations above T_{c} : (II)

$$
a_{i} \neq 0, a_{f} \neq 0
$$

Hierarchy of approximations above T_{c} : (II)

$a_{i} \neq 0, a_{f} \neq 0 \Longrightarrow$ RF spectrum is obtained from the AL (Aslamazov-Larkin) diagram with two different pairing propagators:

$$
\Gamma_{21}\left(\leftrightarrow a_{i}\right) \text { and } \Gamma_{31}\left(\leftrightarrow a_{f}\right)
$$

Hierarchy of approximations above T_{c} : (II)

$a_{i} \neq 0, a_{f} \neq 0 \Longrightarrow$ RF spectrum is obtained from the AL (Aslamazov-Larkin) diagram with two different pairing propagators:

$$
\Gamma_{21}\left(\leftrightarrow a_{i}\right) \text { and } \Gamma_{31}\left(\leftrightarrow a_{f}\right)
$$

- AL diagram requires use of Padé approximants !

Hierarchy of approximations above $T_{c}:$ (II)

$a_{i} \neq 0, a_{f} \neq 0 \Longrightarrow$ RF spectrum is obtained from the AL (Aslamazov-Larkin) diagram with two different pairing propagators:

$$
\Gamma_{21}\left(\leftrightarrow a_{i}\right) \text { and } \Gamma_{31}\left(\leftrightarrow a_{f}\right)
$$

- AL diagram requires use of Padé approximants!
- In both cases (DOS \& AL), in the BEC limit:

$$
N_{\mathrm{mol}} \leftrightarrow N^{\prime}=\text { Volume } \times\left(\frac{m^{2} a_{i}}{8 \pi}\right) \Delta_{\infty}^{2}
$$

with $\Delta_{\infty}^{2}=\int d q e^{i \omega_{\nu} \eta} \Gamma_{21}(q)$

Hierarchy of approximations above $T_{c}:$ (II)

$a_{i} \neq 0, a_{f} \neq 0 \Longrightarrow$ RF spectrum is obtained from the AL (Aslamazov-Larkin) diagram with two different pairing propagators:

$$
\Gamma_{21}\left(\leftrightarrow a_{i}\right) \text { and } \Gamma_{31}\left(\leftrightarrow a_{f}\right)
$$

- AL diagram requires use of Padé approximants !
- In both cases (DOS \& AL), in the BEC limit:

$$
N_{\mathrm{mol}} \leftrightarrow N^{\prime}=\text { Volume } \times\left(\frac{m^{2} a_{i}}{8 \pi}\right) \Delta_{\infty}^{2}
$$

with $\Delta_{\infty}^{2}=\int d q e^{i \omega_{\nu} \eta} \Gamma_{21}(q)$

- Definition of Δ_{∞} holds for arbitrary couplings.

Comparison with experiments for $T \approx T_{c}$:

Comparison with experiments for $T \approx T_{c}$:

$$
\frac{1}{k_{F} a_{i}}=0.4 \quad \frac{1}{k_{F} a_{f}}=3.3
$$

Comparison with experiments for $T \approx T_{c}$:

(*)
(*)

Comparison with experiments for $T \approx T_{c}$:

$$
\begin{align*}
& \frac{1}{k_{F} a_{i}}=0.4 \quad \frac{1}{k_{F} a_{f}}=3.3 \tag{*}\\
& \frac{1}{k_{F a_{i}}}=0.0 \quad \frac{1}{k_{F} a_{f}}=2.6 \tag{*}\\
& \frac{1}{k_{F} a_{i}}=-0.3 \quad \frac{1}{k_{F} a_{f}}=2.0 \tag{*}
\end{align*}
$$

Comparison with experiments for $T \approx T_{c}$:

$$
\begin{aligned}
& \frac{1}{k_{F} a_{i}}=0.4 \quad \frac{1}{k_{F} a_{f}}=3.3 \\
& \frac{1}{k_{F} a_{i}}=0.0 \quad \frac{1}{k_{F} a_{f}}=2.6 \\
& \frac{1}{k_{F} a_{i}}=-0.3 \quad \frac{1}{k_{F} a_{f}}=2.0 \\
& \frac{1}{k_{F} a_{i}}=-0.65 \quad \frac{1}{k_{F} a_{f}}=1.0(*)
\end{aligned}
$$

Comparison with experiments for $T \approx T_{c}$:

$$
\begin{aligned}
& \frac{1}{k_{F} a_{i}}=0.4 \quad \frac{1}{k_{F a f}}=3.3 \quad(*) \\
& \frac{1}{k_{F a i}}=0.0 \quad \frac{1}{k_{F F A}}=2.6 \quad(*) \\
& \frac{1}{k_{F a i}}=-0.3 \quad \frac{1}{k_{F a f}}=2.0 \quad(*) \\
& \frac{1}{k_{F F i}}=-0.65 \quad \frac{1}{k F a f}=1.0 \quad(*) \\
& {[\text { Exp. data from Fig. } 4 \text { of } \mathrm{Na}-} \\
& \text { ture 454, 739 (2008)] }
\end{aligned}
$$

Comparison between DOS and DOS +AL on an absolute scale:

Further comparison with data $\left(T \approx T^{*}\right)$:

Further comparison with data $\left(T \approx T^{*}\right)$:

Further comparison with data $\left(T \approx T^{*}\right)$:

[Exp. data from Fig.8(d) of arXiv:0808.0026v2 Ketterle]

Further comparison with data $\left(T \approx T^{*}\right)$:

[Exp. data from Fig.8(d) of arXiv:0808.0026v2 Ketterle]
\Longrightarrow do not forget about the presence of the bound state with DOS + AL !

We are here $(*) \swarrow:$

Extracting Δ_{∞} from "tail" of RF spectra:

In the green region of the coupling plane, it is possible to extract the quantity Δ_{∞} from the RF spectra via the following "prescription":

Extracting Δ_{∞} from "tail" of RF spectra:

In the green region of the coupling plane, it is possible to extract the quantity Δ_{∞} from the RF spectra via the following "prescription":

- Normalize the continuum peak to its own area

Extracting Δ_{∞} from "tail" of RF spectra:

In the green region of the coupling plane, it is possible to extract the quantity Δ_{∞} from the RF spectra via the following "prescription":

- Normalize the continuum peak to its own area
- Multiply the resulting spectrum by $\left(\frac{\omega}{E_{F}}\right)^{3 / 2}$

Extracting Δ_{∞} from "tail" of RF spectra:

In the green region of the coupling plane, it is possible to extract the quantity Δ_{∞} from the RF spectra via the following "prescription" :

- Normalize the continuum peak to its own area
- Multiply the resulting spectrum by $\left(\frac{\omega}{E_{F}}\right)^{3 / 2}$
- From the intermediate plateau read off
the value $\frac{3}{2^{5 / 2}}\left(\frac{\Delta_{\infty}}{E_{F}}\right)^{2}$

An example: $\left(k_{F} a_{i}\right)^{-1}=0$ and $T \approx T^{*}$

An example: $\left(k_{F} a_{i}\right)^{-1}=0$ and $T \approx T^{*}$

$$
\begin{aligned}
& \begin{array}{l}
\ldots \text { for }\left(k_{F} a_{f}\right)^{-1}=2.6 \\
---\operatorname{for}\left(k_{F} a_{f}\right)^{-1}=3.2
\end{array}
\end{aligned}
$$

An example: $\left(k_{F} a_{i}\right)^{-1}=0$ and $T \approx T^{*}$

An example: $\left(k_{F} a_{i}\right)^{-1}=0$ and $T \approx T^{*}$

But one could do better than this ...

But one could do better than this ...

But one could do better than this ...

But one could do better than this ...

- Final-state effects are negligible $\left({ }^{40} \mathrm{~K}\right)$

But one could do better than this ...

- Final-state effects are negligible $\left({ }^{40} \mathrm{~K}\right)$
- Data on the tail are less noisy

But one could do better than this ...

- Final-state effects are negligible $\left({ }^{40} \mathrm{~K}\right)$
- Data on the tail are less noisy
- A plateau can be identified

Coefficient of the tail: theory vs experiment (in a trap)

Coefficient of the tail: theory vs experiment (in a trap)

Coefficient of the tail: theory vs experiment (in a trap)

Coefficient of the tail: theory vs experiment (in a trap)

On the physical meaning of Δ_{∞} :

On the physical meaning of Δ_{∞} :

In our theory, the wave-vector distribution function $n(\mathbf{k})$ has the asymptotic behavior (for large $|\mathbf{k}|$)

$$
n(\mathbf{k}) \approx \frac{\left(m \Delta_{\infty}\right)^{2}}{\mathbf{k}^{4}}
$$

On the physical meaning of Δ_{∞} :

In our theory, the wave-vector distribution function $n(\mathbf{k})$ has the asymptotic behavior (for large $|\mathbf{k}|$)

$$
n(\mathbf{k}) \approx \frac{\left(m \Delta_{\infty}\right)^{2}}{\mathbf{k}^{4}}
$$

to be compared with Shina Tan' result

$$
n(\mathbf{k}) \approx \frac{C}{\mathbf{k}^{4}},
$$

where C is the "contact intensity" that enters several quantities of a Fermi gas in a universal way.

On the physical meaning of Δ_{∞} :

In our theory, the wave-vector distribution function $n(\mathbf{k})$ has the asymptotic behavior (for large $|\mathbf{k}|$)

$$
n(\mathbf{k}) \approx \frac{\left(m \Delta_{\infty}\right)^{2}}{\mathbf{k}^{4}}
$$

to be compared with Shina Tan' result

$$
n(\mathbf{k}) \approx \frac{C}{\mathbf{k}^{4}},
$$

where C is the "contact intensity" that enters several quantities of a Fermi gas in a universal way.
From our theory we identify $C=\left(m \Delta_{\infty}\right)^{2}$.

Δ_{∞} throughout the BCS-BEC crossover:

Δ_{∞} throughout the BCS-BEC crossover:

- BCS regime : $\quad \Delta_{\infty}=\frac{2 \pi}{m}\left|a_{i}\right| n$ for $T \lesssim\left(m a_{i}^{2}\right)^{-1}$

Δ_{∞} throughout the BCS-BEC crossover:

- BCS regime: $\Delta_{\infty}=\frac{2 \pi}{m}\left|a_{i}\right| n$ for $T \lesssim\left(m a_{i}^{2}\right)^{-1}$
- BEC regime: $\Delta_{\infty}^{2}=\frac{4 \pi n}{m^{2} a_{i}}$ for $T \lesssim\left(m a_{i}^{2}\right)^{-1}$

Δ_{∞} throughout the BCS-BEC crossover:

- BCS regime: $\Delta_{\infty}=\frac{2 \pi}{m}\left|a_{i}\right| n$ for $T \lesssim\left(m a_{i}^{2}\right)^{-1}$
- BEC regime: $\Delta_{\infty}^{2}=\frac{4 \pi n}{m^{2} a_{i}}$ for $T \lesssim\left(m a_{i}^{2}\right)^{-1}$
- Unitarity regime for $T \rightarrow T_{c}^{+}: \quad \frac{\Delta_{\infty}}{E_{F}} \simeq 0.75$

Δ_{∞} throughout the BCS-BEC crossover:

- BCS regime: $\Delta_{\infty}=\frac{2 \pi}{m}\left|a_{i}\right| n$ for $T \lesssim\left(m a_{i}^{2}\right)^{-1}$
- BEC regime: $\Delta_{\infty}^{2}=\frac{4 \pi n}{m^{2} a_{i}}$ for $T \lesssim\left(m a_{i}^{2}\right)^{-1}$
- Unitarity regime for $T \rightarrow T_{c}^{+}: \quad \frac{\Delta_{\infty}}{E_{F}} \simeq 0.75$
to be compared with the value $0.8 E_{F}$ of the "pseudo gap" extracted from single-particle spectral function.

Δ_{∞} vs T at unitarity:

- numerical calculation
 - - - high-temperature expansion

Comparison of DOS+AL with BCS-RPA

 when $T_{c} \leq T \leq T^{*}$:
$-\mathrm{DOS}+\mathrm{AL}$

- BCS-RPA
(each curve with its own μ)

"Gedanken" experiment:

Once theory has been tested to work properly \Longrightarrow

"Gedanken" experiment:

Once theory has been tested to work properly \Longrightarrow do calculations where experiments cannot be done!

"Gedanken" experiment:

Once theory has been tested to work properly do calculations where experiments cannot be done!

$\left(k_{F} a_{i}\right)^{-1}=0$
(a) BCS-RPA
$\mathrm{T}=1.2 \mathrm{~T}_{\mathrm{c}}$

$\left(k_{F} a_{f}\right)^{-1}$ varies
(b) $\mathrm{DOS}+\mathrm{AL}$

Checking Padé approximants for RF spectra both below and above T_{C} :

BCS-RPA for $T<T_{c}$

DOS for $T_{c}<T$

Checking Padé approximants for RF spectra both below and above T_{C} :

In both cases, confront with an independent calculation made directly on the real-frequency axis.
"Dulcis in fundo" (dessert at the end) ...

"Dulcis in fundo" (dessert at the end)

Interpreting the double-peak in Grimm's 2004 RF data as due to final-state effects \& trap averaging:

"Dulcis in fundo" (dessert at the end)

Interpreting the double-peak in Grimm's 2004 RF data as due to final-state effects \& trap averaging:

"Dulcis in fundo" (dessert at the end) ...

Interpreting the double-peak in Grimm's 2004 RF data as due to final-state effects \& trap averaging:

"Dulcis in fundo" (dessert at the end)

Interpreting the double-peak in Grimm's 2004 RF data as due to final-state effects \& trap averaging:

In the "inner part" of the trap final-state effects $(\mathrm{DOS}+\mathrm{AL})$ make it visible the right peak!

Boundary between the "inner" and

 "outer" parts of the trap:

Conclusions:

Conclusions:

\& Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.

Conclusions:

\& Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.
\& There exists a competition between pairing-gap (\longrightarrow) and excitonic (\longleftarrow) effects.

Conclusions:

\& Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.
\& There exists a competition between pairing-gap (\longrightarrow) and excitonic (\longleftarrow) effects.
\& BCS bubble \bigoplus BCS-RPA diagrams at low T.

Conclusions:

\& Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.
\& There exists a competition between pairing-gap (\longrightarrow) and excitonic (\longleftarrow) effects.
\& BCS bubble \bigoplus BCS-RPA diagrams at low T.
\& DOS with pairing self-energy \bigoplus AL diagrams above T_{c} (possibly needed also below T_{c}).

Conclusions:

\& Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.
\& There exists a competition between pairing-gap (\longrightarrow) and excitonic (\longleftarrow) effects.
\& BCS bubble \bigoplus BCS-RPA diagrams at low T.
\& DOS with pairing self-energy \bigoplus AL diagrams above T_{c} (possibly needed also below T_{c}).
\& Extract from RF spectra information about Tan's contact intensity.

