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Jin (2003), Grimm (2004), Ketterle (2003-2008)

Atomic (°Li,*°K) energy levels in a magnetic field:

(N3 =0)

~~~~~ >h ~80 MHz

involved in pairing
P (N 1:N2:N/2)
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Original Innsbruck-Grimm data (°Li) :

From Fig.1 of C. Chin et al., Science 305, 1128
(2004): |
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Questions:

1) From the , Is it possible to
extract the value of the “pairing gap” (order
parameter below T , pseudo-gap above T, ---)?
No interaction: hy =e3— &y

|1 > and |2 > interact: hv # e3 — ey (pairing)

|1 > and |3 > interact: (final-state effects)

2) To what extent final-state effects affect the RF
spectra ?
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Learning from the molecular calculation

(Chin & Julienne - 2005):

When ar =0 = RF spectrum «
x |FT of initial wave function|?
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Analogy with Excitonic Effect in
Semiconductors:

e n=1
conduction bani
n=2
k
n=3
valence band
h no e-h interaction

0 hv

—> competition between (—) and

excitonic («—) effects !
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e A frequency window opens up in the continuum,
where the spectrum the one with
ar = 0!



e A frequency window opens up in the continuum,
where the spectrum “resembles” the one with
af = 0!
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Single molecule = many-body system:

Question: How does one extend the molecular
calculation to finite density n and temperature T 7

In this case, by varying a; across a Fano-Feshbach
resonance, one realizes the BCS-BEC crossover:

,k/:’a,'| S 1 0 < a;, kra; N 1
of BEC limit of
Cooper pairs composite bosons

(kr = Fermi wave vector related to n)
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Recovering the molecular RF spectra from
the many-body RF spectra:

In BEC limit, the many-body RF spectrum Iy(w) is
related to molecular RF spectrum /y(w) as follows:

In(w) = Npor lo(w) (Nl = number of molecules)
For the many-body system, N, is obtained as:

Niol = Ny (condensate) for T < T,

Npor = N' (non — condensate) for T ~ T,

= different “many-body diagrams” are expected to
be important in the two temperature regimes !
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Use this as a criterion to “classify” the

theory work on many-body RF spectra:

Group (year)

| 2

af

| No

N/

Torma (2004)

no

no

Griffin (2005)

no

no

Levin (2005)

no

no

Bruun & Stoof (2008)

no

no

Yu & Baym (2006)

no

Strinati (2008)

no

Mueller (2008)

no

Levin (2009)

no

Strinati (2009)

no




Experimental coupling plane for °Li:
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The system Hamiltonian (°Li):

Deal with “broad” Fano-Feshbach resonances.

e Bare contact interaction v;, between spins “1"
and “2" = regularize it via the scattering
length a1, < a; (initial-state effects)

e Bare contact interaction vq3 between spins “1"
and “3" = regularize it via the scattering
length a;3 < ar (final-state effects)

e Bohr frequency w3y = €3 — £, between “bare”
atomic levels 3 and 2

e Two :
f < common to spins “1” and “2" (N; = N,)
ps < spin “3" (N3 = 0)
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What does an RF experiment measure?

dNs(t)

—— as induced by the perturbing Hamiltonian:

Hl(t) _ ’y/dl‘ o/ (ArFT—wrrt) wg(r)¢2(r) + h.c.
drr =~ 0 and wgr = frequency of RF radiation.

dN3(t)
dt

is related to the current operator:
() = i[H(t), N]
= —iv/dr e (ArF T—wrrt) zp;(r)wg(r) + h.c.
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Within linear-response theory . ..

. one ends up with the (retarded < R) spin-flip
correlation function:

NR(r, it — t') = —if(t — £){[B(r, t), BI(r', )]
where B(r, t) = eXtyl(r)ys(r)e Kt —

the RF spectrum is given by
() = —292 / dr d' T {N1R(r, ¥ wes) )}

where wi, = wrr + 1 — p3 is a “theoretical”
detuning frequency.
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Connection with the diagrammatic PT:

As usual, one needs to introduce the Matsubara
counterpart of the retarded correlation function:

B
M ’/; ) = d fw, T
(r,r';w,) /0 Te
X (T [walr, 0)ul(r, ~ )us(r, T)u(r, 07)])

where w, = 27v/3 [v integer and 3 = (kg T)71]
and T, = imaginary time-ordering operator —
analytic continuation in the complex w;,—plane.

A quite difficult part of the whole story !
(«» sometimes recourse to Padé approximants)
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e |a,=0,ar =0 = non-interacting atoms

RF spectrum is a delta spike at wgrr = w3
take this as the “reference frequency” —

Wexp — WRF — W32

e |3, #0,ar =0/ = atom in initial state “2"

correlates with its mate in “1" within the BCS
approximation =—- RF spectrum is obtained
from the BCS bubble



BCS & BCS-RPA diagrams below T.:
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RF spectrum from BCS bubble at T = 0:
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Hierarchy of approximations below T.: (Il)

e |3, #0,ar #0| = in addition, atom in

final state “3" interacts with atom left behind
in state “1" =— the RF spectrum is obtained
from the BCS-RPA series

e In both cases (BCS & BCS-RPA), in the BEC
limit we get:

2
Nyoo < Ny = Volume x (mS a,) ABCS

™



RF spectrum from BCS-RPA at T = 0:

BCS-RPA vs BCS at T=0

6 . v .
BCS-RPA e
BCS = mms
5 9
1/(kga)=0

1/(k-a;)=-0.93

(No bound state)

Normalized RF signal
w
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Detuning frequency / E¢



Comparison with experiments below T:
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1.0
T=0
0.8} (Keag) =0 1
(kpap) =5
06}
S 2
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312
XW
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0.0 . . .
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e “Pair size” from width of half-maximum
[Ketterle & al., Nature 454, 739 (2008)]

e Energy scale Apgcs (or A, - see below)
from “intermediate-frequency plateau”
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Hierarchy of approximations above T:

The self-energy with “pairing fluctuations”
plays a crucial role = for atoms “2" interacting

with atoms “1"

= — [dqT21(q) Gi(q — k)

e |3;#0,ar =0 = REF spectrum is obtained

from the DOS (density-of-states) diagram



DOS & AL diagrams above T.:
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Hierarchy of approximations above T.: (Il)

e |3, #0,ar #0| = RF spectrum is obtained

from the AL (Aslamazov-Larkin) diagram with
two different pairing propagators:
[21 (<= a;)) and T35 (< ar)
e AL diagram requires use of Padé approximants !

e In both cases (DOS & AL), in the BEC limit:
2

N, < N = Volume x (m il ) A2
8

with A% = [dq e T5(q)

e Definition of A, holds for arbitrary couplings.
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Comparison with experiments for T ~ T.:

= =04 =33 (%)
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[Exp. data from Fig.4 of Na-
ture 454, 739 (2008)]




Comparison between DOS and DOS+AL

on an absolute scale:
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Further comparison with data (T ~ T%):

RF signal
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[Exp. data from Fig.8(d) of arXiv:0808.0026v2 -

Ketterle]

—> do not forget about the presence
of the bound state with DOS-+AL !
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Extracting A, from “tail” of RF spectra:

In the it is
possible to extract the quantity A, from the RF
spectra via the following “prescription” :

e Normalize the continuum peak to its own area
_ _ 3/2
e Multiply the resulting spectrum by (ﬁ)

e From the intermediate plateau read off

2
3 A
the value 2572 <E—F>



An example: (kra;) ' =0and T ~ T*
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An example: (kra;))™'=0and T =~ T*

— for (kras) ™1 =26

3/2

- - - for (kras) ™1 =3.2

ormalized RF signal times (w/ Eg)

Norm:
o o
(2} o]
aa] o
o] D.ﬁg
$g

.
0.4 o8,
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An example: (kra;))™'=0and T =~ T*

o — for (kFaf)_l — 26
3
3 1
g - - - for (kraf)™* = 3.2
g v 3
g 1 8
fos g D _ +0.12
TEB 0.6 % plateau EF - 0-69_016
2 0.4 B .;['”'a.

0.2 o -

0 J ? om

5 0 5 10 15




An example: (kra;))™'=0and T =~ T*

. — for (krar) ™1 = 2.6
:
e -1 _
é - - - for (k/:af) =3.2
g o1 g
Eo.e 0 A_Oo _ +0.12
o %@ﬁ plateau 7= = 0.69Z15
2 04 o .;['”'a.
0.2 g o oo —
of b theoret. value 4= = 0.73
5 0 5 10 15
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(kga)'=+0.15; T=T,

0.6
=z Theory
g JILA exp. data
] \
W 0.4 /\
[i4
o f \
: \
T 02
E /
5 \
z Vo,
0.0 —_—

-2 0 2 4 6 8 10
Detuning frequency / E¢



But one could do better than this ...

(kga)'=+0.15; T=T, (kpa)'=+0.15; T=T,

0.6 s
= ' Theory 3 0.4 Theory
g JILA exp. data x : JILA exp. data
3 \ 3 0.205 ——
u 04 S 03 0.170 ——
@ \ i /8~
§ f € o02}7
— e}
S 02 \ 2 /
€ N 0.1
5 \ s 0lf/
z o €

0.0 S — S 00

2 0 2 4 6 8 10 0 2 4 6 8 10

Detuning frequency / E¢ Detuning frequency / Eg



But one could do better than this ...

(kga)'=+0.15; T=T, (kpa)'=+0.15; T=T,

06 B
= ' Theory 3 g4 Theory
S JILA exp.data @ il . JILAexp.data @
k= <
& 8 ° 0.205
W 0.4 k=) 0.3 0.170 ——
(v 2
3 i 0.2 %
N - o ==
T 02 @ b [
£ = 0.1
S < ’
z 15

0.0 S 00

-2 0 2 4 6 8 10 0 2 4 6 8 10
Detuning frequency / E¢ Detuning frequency / Eg

e Final-state effects are negligible (*°K)



But

Normalized RF signal

one could do better than this ...

(kga)'=+0.15; T=T, (kpa)'=+0.15; T=T,
06 3
' Theory 3 0.4 Theory
JILA exp. data @ x . JILA exp. data @
g ° 0.205
0.4 % 0.3 0.170 ——
('
o 0.2 — o —
0.2 3 M A
= 01
E
0.0 S o0
-2 0 2 4 6 8 10 0 2 4 6 8 10
Detuning frequency / E¢ Detuning frequency / Eg
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But

Normalized RF signal

one could do better than this ...

(kga)'=+0.15; T=T, . (kpa)'=+0.15; T=T,
0.6 Theory B o4 Theory
JILA exp. data @ x . JILA exp. data @

S ° 0.205

0.4 % 0.3 0.170 ——
('
o 0.2 — o —

0.2 3 M A
£ o1
E

0.0 S 00

-2 0 2 4 6 8 10 0 2 4 6 8 10

Detuning frequency / E¢

Detuning frequency / Eg

Final-state effects are negligible (*°K)
Data on the tail are less noisy

A plateau can be identified



Coefficient of the tail: theory vs
experiment (in a trap)
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Coefficient of the tail: theory vs
experiment (in a trap)
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Coefficient of the tail: theory vs
experiment (in a trap)

1.0 -
| Homogeneous
N Trap
A | JiLAdata @
= L
% 3
8 04} o
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several quantities of a Fermi gas in a universal way.



On the physical meaning of A :

In our theory, the wave-vector distribution function
n(k) has the asymptotic behavior (for large |k|)

(mAL)?2
e

to be compared with Shina Tan’ result

C

T k4

n(k) ~

n(k)

where C is the “contact intensity” that enters
several quantities of a Fermi gas in a universal way.

From our theory we identify C = (mA..)?2



A throughout the BCS-BEC crossover:



A throughout the BCS-BEC crossover:

e BCSregime: A= %ﬂa;]n for TS (mal?)—1



A throughout the BCS-BEC crossover:

e BCSregime: A= %ﬂa;]n for TS (mal?)—1

o BECregime: A3 =21 for T 5 (ma?)L



A throughout the BCS-BEC crossover:

e BCSregime: A= %ﬂa;]n for TS (mal?)—1
o BEC regime: A2 =40 for TS (ma?)™!
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A throughout the BCS-BEC crossover:

e BCSregime: A= %ﬂa,-]n for TS (mal?)—1

o BECregime: A3 =21 for T 5 (ma?)L

e Unitarity regime for T — T/ %—: ~ 0.75

to be compared with the value 0.8Ef of the
“pseudo gap” extracted from single-particle
spectral function.



A, vs T at unitarity:

1
0.75
L
;8 0.5
0.25 }

T/Te

——  numerical calculation
- - - high-temperature expansion



Comparison of DOS+AL with BCS-RPA
when T, < T < T*:

Normalized RF signal

0.8

0.4

=3
5}

N

-

(kea)'=0.0
(kea)'=2.6

T=1.1Tc=0.5T

—— DOS+AL

—— BCS-RPA

(each curve with its own 1)
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“Gedanken” experiment:

Once theory has been tested to work properly —
do calculations where experiments cannot be done !
T=0 T=12T,

J® e

1}@)
0.8 08

0.6 0.6

RF signal
RF signal

0.4 0.4

0.2

0.2

W/Ep W/EE

(kra;))™t =0 (kpar)™! varies
(a) BCS-RPA (b) DOS+AL



Checking Padé approximants for RF
spectra both below and above T.:

RF signal

0.6

T=0.1T¢

Real Freq. -

I Pade —
(kea)t=0
0.4 (keap™=15
0.2
o]
6 -4 -2

BCS-RPA for T < T,

o Ep

RF signal

0.5

0.4

0.3

0.2

0.1

T=117, Real Eﬁjqé o

0

o Ep

DOS for T, < T



Checking Padé approximants for RF
spectra both below and above T.:

0.6 05 :
01T Real Freq. - i Ter11, RealFreq.
(ke ai)'lzo i Pade — 04 A (ke ai)rlzo pace
7 04] | keapio1s T o3
5 2
o n
£ oo e
0.1
. 0
e . ) 10
W, W Ep
BCS-RPA for T < T, DOS for Tc < T

In both cases, confront with an independent
calculation made directly on the real-frequency axis.
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“Dulcis in fundo” (dessert at the end) ...

Interpreting the double-peak in Grimm's 2004 RF
data as due to final-state effects & trap averaging:

(ke 8) =0, (kg ap =1, T=T, (ke 8) =0, (kg ap =1, T=T,
16 DOS 16 Inner DOS
DOS+AL —— Inner AL+DOS ——
1.2 1.2 Outer
3 3
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“Dulcis in fundo” (dessert at the end) ...

Interpreting the double-peak in Grimm's 2004 RF
data as due to final-state effects & trap averaging:

(ke 3) =0, (kg a)™=-1, T=T, (ke @) '=0,(kg ap=-1, T=T,
16 DOS 16 Inner DOS
DOS+AL —— Inner AL+DOS ——
12 12 Outer
© ©
c c
3 o8 3 o8
('8 ('8
o o
0.4 0.4
0 0
1 0 1 2 3 4 1 0 1 2 3 4
WEp WEp

In the “inner part” of the trap final-state effects
(DOS + AL) make it visible the right peak!



Boundary between the “inner” and
“outer” parts of the trap:

(ke 2)1=0,T=T,

1.6
1.2
08
E
S
04
Inner Outer
0

0 02 0406 08 1 12 14 16
IRe
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Conclusions:

& Inclusion of final-state effects is essential for
a correct understanding of the RF spectra of
ultra-cold Fermi atoms.

& There exists a competition between
(—) and excitonic (+—) effects.

& BCS bubble  BCS-RPA diagrams at low T.

& DOS with pairing self-energy @ AL diagrams
above T, (possibly needed also below T.).

& Extract from RF spectra information about
Tan's contact intensity.



