Theory of radio-frequency spectroscopy of ultracold Fermi atoms

G.C. Strinati
Dipartimento di Fisica, Università di Camerino
(Italy)

"FerMix 2009 Meeting" Trento (Italy), 3-5 June 2009

References:

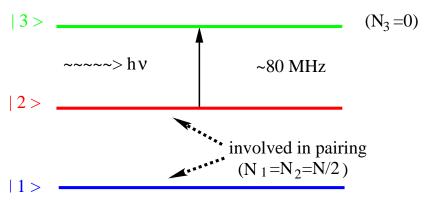
- [1] A. Perali, P. Pieri, and G.C. Strinati,
 Phys. Rev. Lett. 100, 010402 (2008):
 "Competition between final state and pairing gap effects in the radio-frequency spectra of ultracold Fermi atoms" [below T_c]
- [2] P. Pieri, A. Perali, and G.C. Strinati, preprint at http://arxiv.org/abs/0811.0770: "Enhanced paraconductivity-like fluctuations in the radio frequency spectra of ultracold Fermi atoms" [above T_c]

Jin (2003), Grimm (2004), Ketterle (2003-2008)

Jin (2003), Grimm (2004), Ketterle (2003-2008) Atomic ($^6\mathrm{Li}, ^{40}\mathrm{K}$) energy levels in a magnetic field:

Jin (2003), Grimm (2004), Ketterle (2003-2008)

Atomic (⁶Li, ⁴⁰K) energy levels in a magnetic field:



Original Innsbruck-Grimm data (⁶Li):

From Fig.1 of C. Chin *et al.*, Science **305**, 1128 (2004):

822G 837G 837G

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_c , pseudo-gap above T_c , ...)?

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_c , pseudo-gap above T_c , ...)?

No interaction: $h\nu = \varepsilon_3 - \varepsilon_2$

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_c , pseudo-gap above T_c , ...)?

No interaction: $h\nu = \varepsilon_3 - \varepsilon_2$

|1> and |2> interact: $h\nu \neq \varepsilon_3 - \varepsilon_2$ (pairing)

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_c , pseudo-gap above T_c , ...)?

```
No interaction: h\nu = \varepsilon_3 - \varepsilon_2 |1> and |2> interact: h\nu \neq \varepsilon_3 - \varepsilon_2 (pairing) |1> and |3> interact: (final-state effects)
```

No interaction:

1) From the shape of RF spectra, is it possible to extract the value of the "pairing gap" (order parameter below T_c , pseudo-gap above T_c , ...)?

$$|1>$$
 and $|2>$ interact: $h
u
eq arepsilon_3-arepsilon_2$ (pairing)

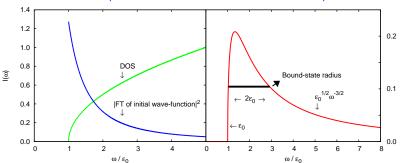
 $h\nu = \varepsilon_3 - \varepsilon_2$

$$|1>$$
 and $|3>$ interact: (final-state effects)

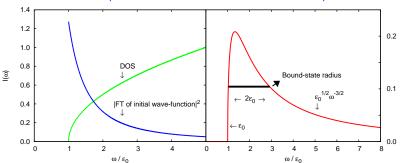
2) To what extent final-state effects affect the RF spectra?

When $a_f = 0 \implies RF$ spectrum \propto density of final states \times |FT of initial wave function $|^2$

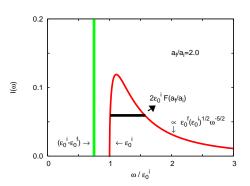
When $a_f = 0 \implies RF$ spectrum \propto density of final states $\times |FT$ of initial wave function $|^2$

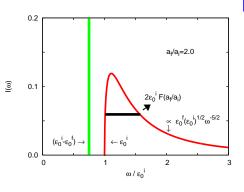


When $a_f = 0 \implies RF$ spectrum \propto density of final states $\times |FT$ of initial wave function $|^2$

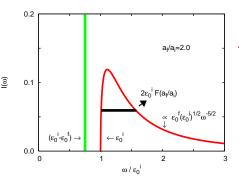


extract binding energy from threshold & bound-state radius from width of half-maximum



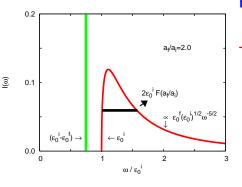


Piles up at threshold

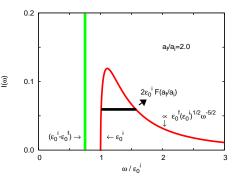


Piles up at threshold

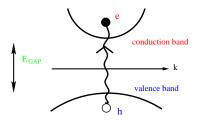
Tail decays faster

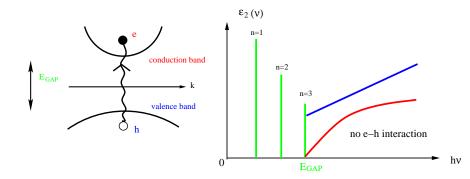


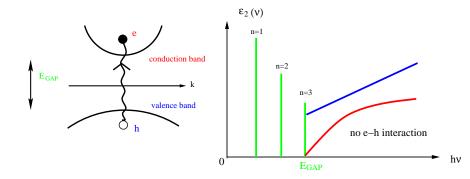
Piles up at threshold Tail decays faster Bound peak (.|.) appears



Piles up at threshold Tail decays faster Bound peak (.|.) appears Total area is preserved

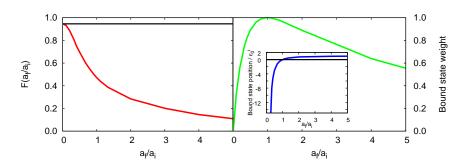




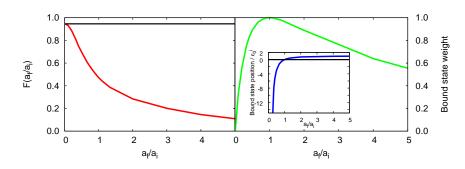


 \implies competition between finite-gap (\longrightarrow) and excitonic (\longleftarrow) effects!

Characteristics of molecular spectra:

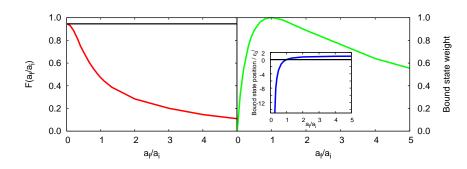


Characteristics of molecular spectra:



 \Longrightarrow suggestion: when a_f is sufficiently $\neq a_i$

Characteristics of molecular spectra:

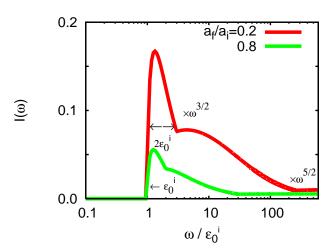


 \Longrightarrow suggestion: when a_f is sufficiently $eq a_i$

 The position of the bound peak recedes away from threshold

• A frequency window opens up in the continuum, where the spectrum "resembles" the one with $a_f = 0$!

• A frequency window opens up in the continuum, where the spectrum "resembles" the one with $a_f = 0$!



Question: How does one extend the molecular calculation to finite density n and temperature T?

Question: How does one extend the molecular calculation to finite density n and temperature T? In this case, by varying a_i across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

Question: How does one extend the molecular calculation to finite density n and temperature T? In this case, by varying a_i across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

$$|a_i| < 0, k_F |a_i| \stackrel{<}{\sim} 1$$

Question: How does one extend the molecular calculation to finite density n and temperature T? In this case, by varying a_i across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

$$|a_i < 0, k_F |a_i| \stackrel{<}{\sim} 1$$
 BCS limit of Cooper pairs

Question: How does one extend the molecular calculation to finite density n and temperature T? In this case, by varying a_i across a Fano-Feshbach

resonance, one realizes the BCS-BEC crossover:

$$|a_i| < 0, k_F |a_i| \stackrel{<}{\sim} 1$$
BCS limit of Cooper pairs

$$0 < a_i, k_F a_i \stackrel{<}{\sim} 1$$

Question: How does one extend the molecular calculation to finite density n and temperature T? In this case, by varying a_i across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

$$|a_i| < 0, k_F |a_i| \stackrel{<}{\sim} 1$$

BCS limit of Cooper pairs

$$\begin{array}{|c|c|} \hline 0 < a_i, k_F a_i \stackrel{<}{\sim} 1 \\ \hline \text{BEC limit of} \\ \text{composite bosons} \end{array}$$

Question: How does one extend the molecular calculation to finite density n and temperature T? In this case, by varying a_i across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

$$|a_i < 0, k_F |a_i| \stackrel{<}{\sim} 1$$
BCS limit of Cooper pairs

$$\begin{array}{c|c} 0 < a_i, k_F a_i \stackrel{<}{\sim} 1 \\ \hline \text{BEC limit of} \\ \text{composite bosons} \end{array}$$

 $(k_F = Fermi wave vector related to n)$

Question: How does one extend the molecular calculation to finite density n and temperature T?

In this case, by varying a_i across a Fano-Feshbach resonance, one realizes the BCS-BEC crossover:

$$|a_i| < 0, k_F |a_i| \stackrel{<}{\sim} 1$$

BCS limit of BEC limit of Cooper pairs composite bosons

 $|k_F| = |c| = |$

In BEC limit, the many-body RF spectrum $I_N(\omega)$ is related to molecular RF spectrum $I_0(\omega)$ as follows:

In BEC limit, the many-body RF spectrum $I_N(\omega)$ is related to molecular RF spectrum $I_0(\omega)$ as follows:

$$I_N(\omega) = N_{\text{mol}} I_0(\omega)$$
 ($N_{\text{mol}} = \text{number of molecules}$)

In BEC limit, the many-body RF spectrum $I_N(\omega)$ is related to molecular RF spectrum $I_0(\omega)$ as follows:

$$I_N(\omega) = N_{\text{mol}} I_0(\omega)$$
 ($N_{\text{mol}} = \text{number of molecules}$)

For the many-body system, $N_{
m mol}$ is obtained as:

In BEC limit, the many-body RF spectrum $I_N(\omega)$ is related to molecular RF spectrum $I_0(\omega)$ as follows:

$$I_N(\omega) = N_{\text{mol}} I_0(\omega)$$
 ($N_{\text{mol}} = \text{number of molecules}$)

For the many-body system, $N_{
m mol}$ is obtained as:

$$N_{\rm mol} \approx N_0$$
 (condensate) for $T \ll T_c$

In BEC limit, the many-body RF spectrum $I_N(\omega)$ is related to molecular RF spectrum $I_0(\omega)$ as follows:

$$I_N(\omega) = N_{\text{mol}} I_0(\omega)$$
 ($N_{\text{mol}} = \text{number of molecules}$)

For the many-body system, $N_{
m mol}$ is obtained as:

$$N_{
m mol} pprox N_0$$
 (condensate) for $T \ll T_c$
 $N_{
m mol} pprox N'$ (non – condensate) for $T pprox T_c$

In BEC limit, the many-body RF spectrum $I_N(\omega)$ is related to molecular RF spectrum $I_0(\omega)$ as follows:

$$I_N(\omega) = N_{\text{mol}} I_0(\omega)$$
 ($N_{\text{mol}} = \text{number of molecules}$)

For the many-body system, $N_{
m mol}$ is obtained as:

$$N_{
m mol} pprox N_0$$
 (condensate) for $T \ll T_c$
 $N_{
m mol} pprox N'$ (non – condensate) for $T pprox T_c$

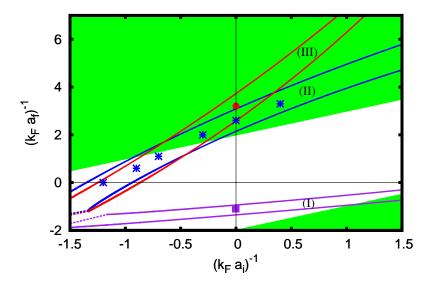
⇒ different "many-body diagrams" are expected to be important in the two temperature regimes!

Use this as a criterion to "classify" the theory work on many-body RF spectra:

Use this as a criterion to "classify" the theory work on many-body RF spectra:

Group (year)	ai	a_f	N_0	N'
Törma (2004)	yes	no	yes	no
Griffin (2005)	yes	no	yes	no
Levin (2005)	yes	no	yes	no
Bruun & Stoof (2008)	yes	no	no	yes
Yu & Baym (2006)	yes	yes	yes	no
Strinati (2008)	yes	yes	yes	no
Mueller (2008)	yes	yes	yes	no
Levin (2009)	yes	yes	yes	no
Strinati (2009)	yes	yes	no	yes

Experimental coupling plane for ⁶Li:



The system Hamiltonian (⁶Li):

The system Hamiltonian (^6Li) :

Deal with "broad" Fano-Feshbach resonances.

• Bare contact interaction v_{12} between spins "1" and "2" \Rightarrow regularize it via the scattering length $a_{12} \leftrightarrow a_i$ (initial-state effects)

The system Hamiltonian (⁶Li):

- Bare contact interaction v_{12} between spins "1" and "2" \Rightarrow regularize it via the scattering length $a_{12} \leftrightarrow a_i$ (initial-state effects)
- Bare contact interaction v_{13} between spins "1" and "3" \Rightarrow regularize it via the scattering length $a_{13} \leftrightarrow a_f$ (final-state effects)

The system Hamiltonian (⁶Li):

- Bare contact interaction v_{12} between spins "1" and "2" \Rightarrow regularize it via the scattering length $a_{12} \leftrightarrow a_i$ (initial-state effects)
- Bare contact interaction v_{13} between spins "1" and "3" \Rightarrow regularize it via the scattering length $a_{13} \leftrightarrow a_f$ (final-state effects)
- Bohr frequency $\omega_{32} = \varepsilon_3 \varepsilon_2$ between "bare" atomic levels 3 and 2

The system Hamiltonian (${}^{6}\mathrm{Li}$):

- Bare contact interaction v_{12} between spins "1" and "2" \Rightarrow regularize it via the scattering length $a_{12} \leftrightarrow a_i$ (initial-state effects)
- Bare contact interaction v_{13} between spins "1" and "3" \Rightarrow regularize it via the scattering length $a_{13} \leftrightarrow a_f$ (final-state effects)
- Bohr frequency $\omega_{32} = \varepsilon_3 \varepsilon_2$ between "bare" atomic levels 3 and 2
- Two chemical potentials: $\mu \leftrightarrow \text{common to spins "1" and "2"} \quad (N_1 = N_2)$ $\mu_3 \leftrightarrow \text{spin "3"} \quad (N_3 = 0)$

What does an RF experiment measure?

What does an RF experiment measure?

 $\frac{dN_3(t)}{dt}$ as induced by the perturbing Hamiltonian:

$$H'(t) = \gamma \int d\mathbf{r} \, e^{i(\mathbf{q}_{RF}\cdot\mathbf{r} - \omega_{RF}t)} \, \psi_3^{\dagger}(\mathbf{r})\psi_2(\mathbf{r}) + h.c.$$

 $\mathbf{q}_{RF} \approx 0$ and $\omega_{RF} =$ frequency of RF radiation.

What does an RF experiment measure?

 $\frac{dN_3(t)}{dt}$ as induced by the perturbing Hamiltonian:

$$H'(t) = \gamma \int d\mathbf{r} \, e^{i(\mathbf{q}_{RF}\cdot\mathbf{r} - \omega_{RF}t)} \, \psi_3^{\dagger}(\mathbf{r})\psi_2(\mathbf{r}) + h.c.$$

 $\mathbf{q}_{RF} \approx 0$ and $\omega_{RF} =$ frequency of RF radiation.

 $\frac{dN_3(t)}{dt}$ is related to the current operator:

$$I(t) = i[H'(t), N_3]$$

$$= -i\gamma \int d\mathbf{r} \, e^{i(\mathbf{q}_{RF} \cdot \mathbf{r} - \omega_{RF} t)} \, \psi_3^{\dagger}(\mathbf{r}) \psi_2(\mathbf{r}) + h.c.$$

Within linear-response theory ...

Within linear-response theory ...

... one ends up with the (retarded \leftrightarrow R) spin-flip correlation function:

$$\Pi^{R}(\mathbf{r},\mathbf{r}';t-t') = -i\theta(t-t')\langle [B(\mathbf{r},t),B^{\dagger}(\mathbf{r}',t')]\rangle$$
 where $B(\mathbf{r},t) = e^{iKt}\psi_{2}^{\dagger}(\mathbf{r})\psi_{3}(\mathbf{r})e^{-iKt}$ \Longrightarrow

Within linear-response theory . . .

... one ends up with the (retarded $\leftrightarrow R$) spin-flip correlation function:

$$\Pi^{R}(\mathbf{r}, \mathbf{r}'; t - t') = -i\theta(t - t')\langle [B(\mathbf{r}, t), B^{\dagger}(\mathbf{r}', t')]\rangle$$
 where $B(\mathbf{r}, t) = e^{iKt}\psi_{2}^{\dagger}(\mathbf{r})\psi_{3}(\mathbf{r})e^{-iKt}$ \Longrightarrow the RF spectrum is given by

$$I(\omega_{th}) = -2\gamma^2 \int d\mathbf{r} d\mathbf{r}' \operatorname{Im}\{\Pi^R(\mathbf{r}, \mathbf{r}'; \omega_{th})\}$$

where $\omega_{th} = \omega_{RF} + \mu - \mu_3$ is a "theoretical" detuning frequency.

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

$$\Pi(\mathbf{r}, \mathbf{r}'; \omega_{\nu}) = \int_{0}^{\beta} d\tau \, e^{i\omega_{\nu}\tau} \\
\times \langle \mathbf{T}_{\tau} \left[\psi_{2}(\mathbf{r}', 0) \psi_{2}^{\dagger}(\mathbf{r}', \tau^{+}) \psi_{3}(\mathbf{r}, \tau) \psi_{3}^{\dagger}(\mathbf{r}', 0^{+}) \right] \rangle$$

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

$$\Pi(\mathbf{r}, \mathbf{r}'; \omega_{\nu}) = \int_{0}^{\beta} d\tau \, e^{i\omega_{\nu}\tau} \\
\times \langle \mathbf{T}_{\tau} \left[\psi_{2}(\mathbf{r}', 0) \psi_{2}^{\dagger}(\mathbf{r}', \tau^{+}) \psi_{3}(\mathbf{r}, \tau) \psi_{3}^{\dagger}(\mathbf{r}', 0^{+}) \right] \rangle$$

where $\omega_{\nu} = 2\pi\nu/\beta$ [ν integer and $\beta = (k_B T)^{-1}$] and $T_{\tau} =$ imaginary time-ordering operator \Longrightarrow

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

$$\Pi(\mathbf{r}, \mathbf{r}'; \omega_{\nu}) = \int_{0}^{\beta} d\tau \, e^{i\omega_{\nu}\tau} \\
\times \langle \mathbf{T}_{\tau} \left[\psi_{2}(\mathbf{r}', 0) \psi_{2}^{\dagger}(\mathbf{r}', \tau^{+}) \psi_{3}(\mathbf{r}, \tau) \psi_{3}^{\dagger}(\mathbf{r}', 0^{+}) \right] \rangle$$

where $\omega_{\nu} = 2\pi\nu/\beta$ [ν integer and $\beta = (k_BT)^{-1}$] and $T_{\tau} =$ imaginary time-ordering operator \Longrightarrow analytic continuation in the complex ω_{th} -plane.

As usual, one needs to introduce the Matsubara counterpart of the retarded correlation function:

$$\Pi(\mathbf{r}, \mathbf{r}'; \omega_{\nu}) = \int_{0}^{\beta} d\tau \, e^{i\omega_{\nu}\tau} \\
\times \langle \mathbf{T}_{\tau} \left[\psi_{2}(\mathbf{r}', 0) \psi_{2}^{\dagger}(\mathbf{r}', \tau^{+}) \psi_{3}(\mathbf{r}, \tau) \psi_{3}^{\dagger}(\mathbf{r}', 0^{+}) \right] \rangle$$

where $\omega_{\nu} = 2\pi\nu/\beta$ [ν integer and $\beta = (k_BT)^{-1}$] and $T_{\tau} =$ imaginary time-ordering operator \Longrightarrow analytic continuation in the complex ω_{th} -plane.

A quite difficult part of the whole story!
(← sometimes recourse to Padé approximants)

• $a_i = 0, a_f = 0$ \Longrightarrow non-interacting atoms

• $a_i = 0$, $a_f = 0$ \Longrightarrow non-interacting atoms RF spectrum is a delta spike at $\omega_{RF} = \omega_{32}$

• $a_i = 0$, $a_f = 0$ \Longrightarrow non-interacting atoms RF spectrum is a delta spike at $\omega_{RF} = \omega_{32}$ take this as the "reference frequency" \Longrightarrow $\omega_{\rm exp} = \omega_{RF} - \omega_{32}$

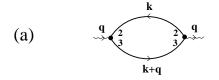
• $a_i = 0$, $a_f = 0$ \Longrightarrow non-interacting atoms RF spectrum is a delta spike at $\omega_{RF} = \omega_{32}$ take this as the "reference frequency" \Longrightarrow $\omega_{\exp} = \omega_{RF} - \omega_{32}$

• $a_i \neq 0$, $a_f = 0$ \implies atom in initial state "2" correlates with its mate in "1" within the BCS approximation

• $a_i = 0$, $a_f = 0$ \Longrightarrow non-interacting atoms RF spectrum is a delta spike at $\omega_{RF} = \omega_{32}$ take this as the "reference frequency" \Longrightarrow $\omega_{\exp} = \omega_{RF} - \omega_{32}$

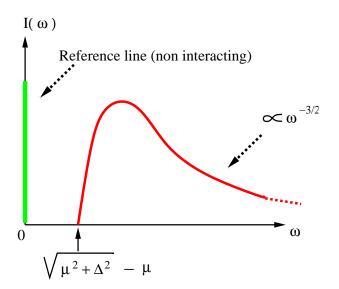
• $a_i \neq 0$, $a_f = 0$ \Longrightarrow atom in initial state "2" correlates with its mate in "1" within the BCS approximation \Longrightarrow RF spectrum is obtained from the BCS bubble

BCS & BCS-RPA diagrams below T_c :



(b)
$$\begin{array}{c} q^{k} - k \\ \downarrow q^{k} \\ \downarrow q \\ \downarrow$$

RF spectrum from BCS bubble at T=0:



• $|a_i \neq 0, a_f \neq 0| \implies$ in addition, atom in

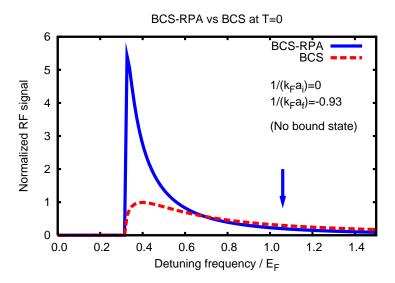
• $a_i \neq 0$, $a_f \neq 0$ \Longrightarrow in addition, atom in final state "3" interacts with atom left behind in state "1"

• $a_i \neq 0$, $a_f \neq 0$ \Longrightarrow in addition, atom in final state "3" interacts with atom left behind in state "1" \Longrightarrow the RF spectrum is obtained from the BCS-RPA series

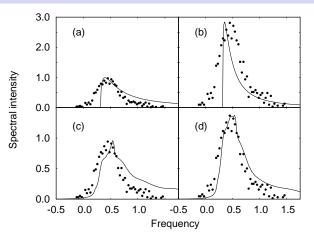
- $a_i \neq 0$, $a_f \neq 0$ \Longrightarrow in addition, atom in final state "3" interacts with atom left behind in state "1" \Longrightarrow the RF spectrum is obtained from the BCS-RPA series
- In both cases (BCS & BCS-RPA), in the BEC limit we get:

$$N_{\rm mol} \leftrightarrow N_0 = \text{Volume} \times \left(\frac{m^2 a_i}{8\pi}\right) \Delta_{BCS}^2$$

RF spectrum from BCS-RPA at T=0:

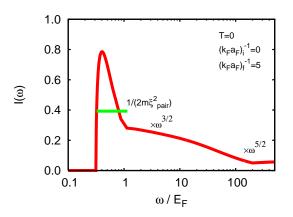


Comparison with experiments below T_c :

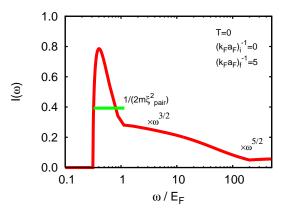


$$(k_F a_i)^{-1} = 0$$
 $(k_F a_f)^{-1} = -1.32$ $T \stackrel{<}{\sim} 0.5 T_c$ [Exp. data: Fig.2(d) of PRL **99**, 090403 (2007)]

When a_f is quite different from a_i :

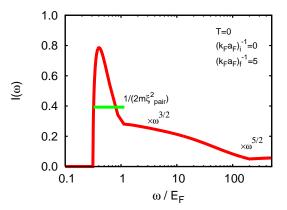


When a_f is quite different from a_i :



 "Pair size" from width of half-maximum [Ketterle & al., Nature 454, 739 (2008)]

When a_f is quite different from a_i :



- "Pair size" from width of half-maximum [Ketterle & al., Nature 454, 739 (2008)]
- Energy scale Δ_{BCS} (or Δ_{∞} see below) from "intermediate-frequency plateau"

The self-energy $\Sigma(k)$ with "pairing fluctuations" plays a crucial role

The self-energy $\Sigma(k)$ with "pairing fluctuations" plays a crucial role \implies for atoms "2" interacting with atoms "1"

$$\sum_{2}(k) = -\int dq \, \Gamma_{21}(q) \, \mathcal{G}_{1}(q-k)$$

The self-energy $\Sigma(k)$ with "pairing fluctuations" plays a crucial role \implies for atoms "2" interacting with atoms "1"

$$\sum_{2}(k) = -\int dq \, \Gamma_{21}(q) \, \mathcal{G}_{1}(q-k)$$

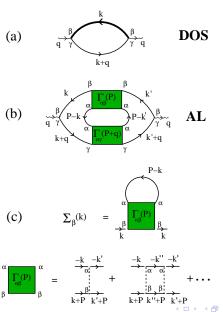
 $\bullet \quad \boxed{a_i \neq 0, a_f = 0}$

The self-energy $\Sigma(k)$ with "pairing fluctuations" plays a crucial role \implies for atoms "2" interacting with atoms "1"

$$\sum_{2}(k) = -\int dq \, \Gamma_{21}(q) \, \mathcal{G}_{1}(q-k)$$

• $a_i \neq 0$, $a_f = 0$ \Longrightarrow RF spectrum is obtained from the DOS (density-of-states) diagram

DOS & AL diagrams above T_c :



• $a_i \neq 0, a_f \neq 0$

• $a_i \neq 0$, $a_f \neq 0$ \Longrightarrow RF spectrum is obtained from the AL (Aslamazov-Larkin) diagram with two different pairing propagators:

$$\Gamma_{21} \left(\leftrightarrow a_i \right)$$
 and $\Gamma_{31} \left(\leftrightarrow a_f \right)$

• $a_i \neq 0$, $a_f \neq 0$ \Longrightarrow RF spectrum is obtained from the AL (Aslamazov-Larkin) diagram with two different pairing propagators:

$$\Gamma_{21} \left(\leftrightarrow a_i \right)$$
 and $\Gamma_{31} \left(\leftrightarrow a_f \right)$

AL diagram requires use of Padé approximants!

• $a_i \neq 0$, $a_f \neq 0$ \Longrightarrow RF spectrum is obtained from the AL (Aslamazov-Larkin) diagram with two different pairing propagators:

$$\Gamma_{21} \left(\leftrightarrow a_i \right)$$
 and $\Gamma_{31} \left(\leftrightarrow a_f \right)$

- AL diagram requires use of Padé approximants!
- In both cases (DOS & AL), in the BEC limit:

$$N_{\rm mol} \leftrightarrow N' = \text{Volume} \times \left(\frac{m^2 a_i}{8\pi}\right) \Delta_{\infty}^2$$

with
$$\Delta_{\infty}^2 = \int dq \, e^{i\omega_{\nu}\eta} \, \Gamma_{21}(q)$$

• $a_i \neq 0, a_f \neq 0$ \Longrightarrow RF spectrum is obtained from the AL (Aslamazov-Larkin) diagram with two different pairing propagators:

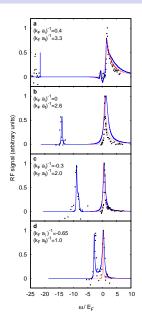
$$\Gamma_{21} \left(\leftrightarrow a_i \right)$$
 and $\Gamma_{31} \left(\leftrightarrow a_f \right)$

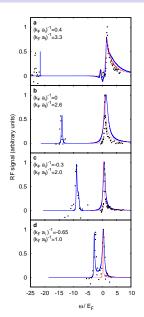
- AL diagram requires use of Padé approximants!
- In both cases (DOS & AL), in the BEC limit:

$$N_{\mathrm{mol}} \leftrightarrow N' = \mathrm{Volume} \times \left(\frac{m^2 a_i}{8\pi}\right) \Delta_{\infty}^2$$

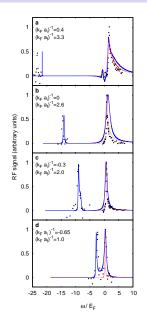
with
$$\Delta_{\infty}^2 = \int dq \, e^{i\omega_{\nu}\eta} \, \Gamma_{21}(q)$$

Definition of Δ_{∞} holds for arbitrary couplings.



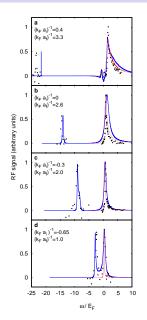


$$\frac{1}{k_F a_i} = 0.4$$
 $\frac{1}{k_F a_f} = 3.3$ (*)



$$\frac{1}{k_F a_i} = 0.4$$
 $\frac{1}{k_F a_f} = 3.3$ (*)

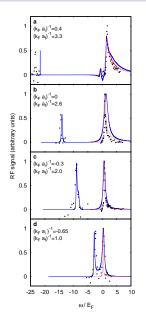
$$\frac{1}{k_F a_i} = 0.0$$
 $\frac{1}{k_F a_f} = 2.6$ (*)



$$\frac{1}{k_F a_i} = 0.4$$
 $\frac{1}{k_F a_f} = 3.3$ (*)

$$\frac{1}{k_F a_i} = 0.0 \quad \frac{1}{k_F a_f} = 2.6 \quad (*)$$

$$\frac{1}{k_F a_i} = -0.3 \quad \frac{1}{k_F a_f} = 2.0 \quad (*)$$

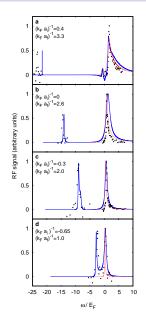


$$\frac{1}{k_F a_i} = 0.4$$
 $\frac{1}{k_F a_f} = 3.3$ (*)

$$\frac{1}{k_F a_i} = 0.0 \quad \frac{1}{k_F a_f} = 2.6 \quad (*)$$

$$\frac{1}{k_F a_i} = -0.3 \quad \frac{1}{k_F a_f} = 2.0 \quad (*)$$

$$\frac{1}{k_F a_i} = -0.65 \quad \frac{1}{k_F a_f} = 1.0 \ (*)$$



$$\frac{1}{k_F a_i} = 0.4$$
 $\frac{1}{k_F a_f} = 3.3$ (*)

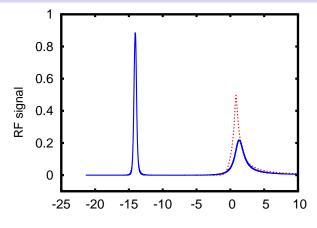
$$\frac{1}{k_F a_i} = 0.0 \quad \frac{1}{k_F a_f} = 2.6 \quad (*)$$

$$\frac{1}{k_F a_i} = -0.3 \quad \frac{1}{k_F a_f} = 2.0 \quad (*)$$

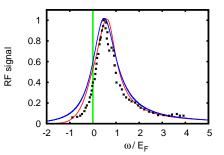
$$\frac{1}{k_F a_i} = -0.65 \quad \frac{1}{k_F a_f} = 1.0 \ (*)$$

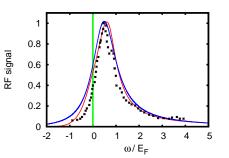
[Exp. data from Fig.4 of Nature **454**, 739 (2008)]

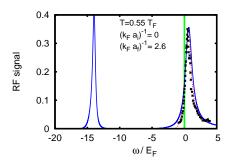
Comparison between DOS and DOS+AL on an absolute scale:

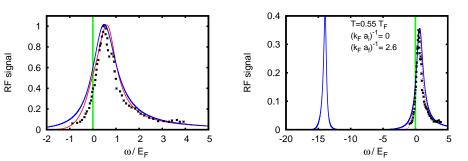


$$\frac{\omega/E_F}{\omega_i} = 0.0$$
 $\frac{1}{k_F a_f} = 2.6$ $\frac{T_c}{\omega_i} \approx T_c$









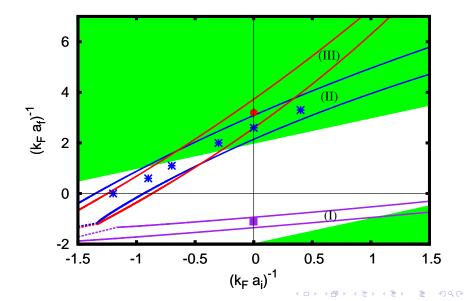
[Exp. data from Fig.8(d) of arXiv:0808.0026v2 - Ketterle]



[Exp. data from Fig.8(d) of arXiv:0808.0026v2 - Ketterle]

⇒ do not forget about the presence of the bound state with DOS+AL!

We are here $(*) \checkmark$:



Extracting Δ_{∞} from "tail" of RF spectra:

In the green region of the coupling plane , it is possible to extract the quantity Δ_{∞} from the RF spectra via the following "prescription" :

Extracting Δ_{∞} from "tail" of RF spectra:

In the green region of the coupling plane , it is possible to extract the quantity Δ_{∞} from the RF spectra via the following "prescription" :

Normalize the continuum peak to its own area

Extracting Δ_{∞} from "tail" of RF spectra:

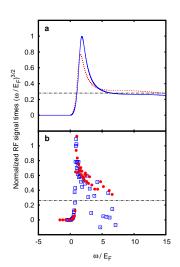
In the green region of the coupling plane , it is possible to extract the quantity Δ_{∞} from the RF spectra via the following "prescription" :

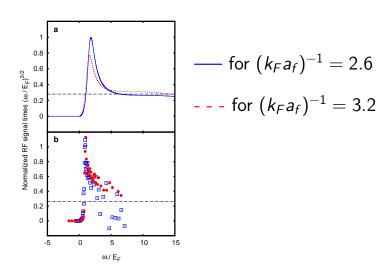
- Normalize the continuum peak to its own area
- Multiply the resulting spectrum by $\left(\frac{\omega}{E_F}\right)^{3/2}$

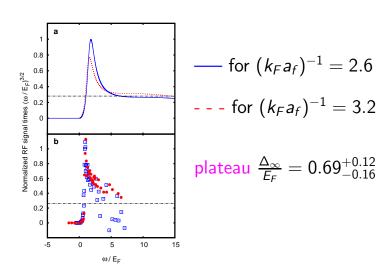
Extracting Δ_{∞} from "tail" of RF spectra:

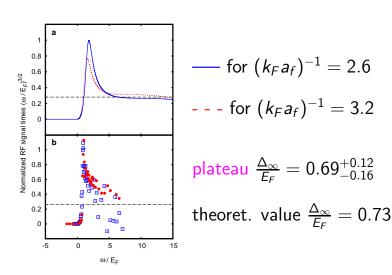
In the green region of the coupling plane , it is possible to extract the quantity Δ_{∞} from the RF spectra via the following "prescription" :

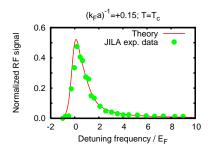
- Normalize the continuum peak to its own area
- Multiply the resulting spectrum by $\left(\frac{\omega}{E_F}\right)^{3/2}$
- From the intermediate plateau read off the value $\frac{3}{2^{5/2}} \left(\frac{\Delta_{\infty}}{E_F}\right)^2$

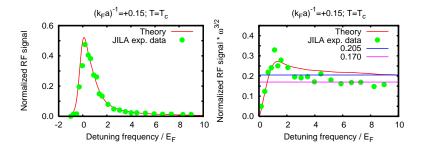


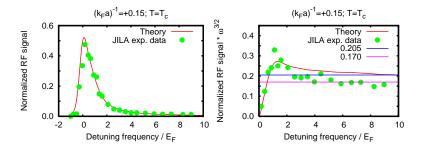




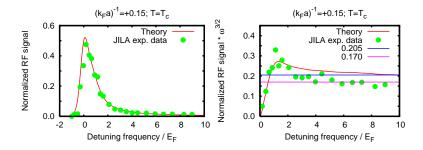




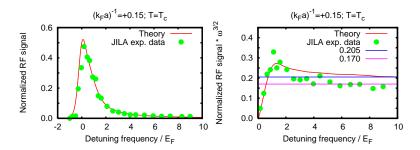




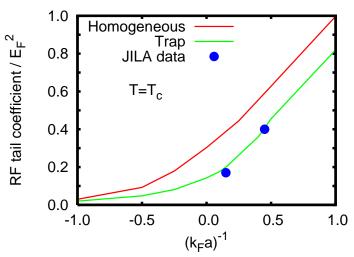
Final-state effects are negligible (⁴⁰K)

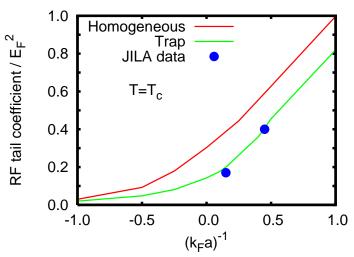


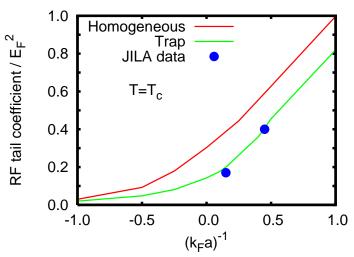
- Final-state effects are negligible (^{40}K)
- Data on the tail are less noisy

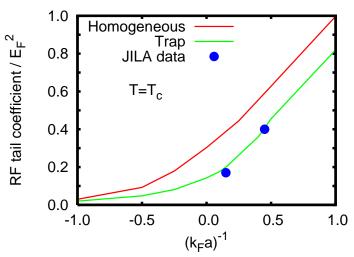


- Final-state effects are negligible (⁴⁰K)
- Data on the tail are less noisy
- A plateau can be identified









In our theory, the wave-vector distribution function $n(\mathbf{k})$ has the asymptotic behavior (for large $|\mathbf{k}|$)

$$n(\mathbf{k}) \approx \frac{(m \Delta_{\infty})^2}{\mathbf{k}^4},$$

In our theory, the wave-vector distribution function $n(\mathbf{k})$ has the asymptotic behavior (for large $|\mathbf{k}|$)

$$n(\mathbf{k}) \approx \frac{(m \Delta_{\infty})^2}{\mathbf{k}^4},$$

to be compared with Shina Tan' result

$$n(\mathbf{k}) \approx \frac{C}{\mathbf{k}^4}$$

where *C* is the "contact intensity" that enters several quantities of a Fermi gas in a universal way.

In our theory, the wave-vector distribution function $n(\mathbf{k})$ has the asymptotic behavior (for large $|\mathbf{k}|$)

$$n(\mathbf{k}) \approx \frac{(m \Delta_{\infty})^2}{\mathbf{k}^4},$$

to be compared with Shina Tan' result

$$n(\mathbf{k}) \approx \frac{C}{\mathbf{k}^4}$$

where *C* is the "contact intensity" that enters several quantities of a Fermi gas in a universal way.

From our theory we identify $C = (m \Delta_{\infty})^2$.

• BCS regime : $\Delta_{\infty} = \frac{2\pi}{m} |a_i| n$ for $T \stackrel{<}{\sim} (ma_i^2)^{-1}$

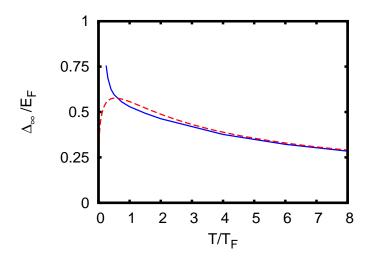
- BCS regime : $\Delta_{\infty} = \frac{2\pi}{m} |a_i| n$ for $T \stackrel{<}{\sim} (ma_i^2)^{-1}$
- BEC regime : $\Delta_{\infty}^2 = \frac{4\pi n}{m^2 a_i}$ for $T \stackrel{<}{\sim} (m a_i^2)^{-1}$

- BCS regime : $\Delta_{\infty} = \frac{2\pi}{m} |a_i| n$ for $T \stackrel{<}{\sim} (ma_i^2)^{-1}$
- BEC regime : $\Delta_{\infty}^2 = \frac{4\pi n}{m^2 a_i}$ for $T \stackrel{<}{\sim} (m a_i^2)^{-1}$
- Unitarity regime for $T \to T_c^+$: $\frac{\Delta_{\infty}}{E_F} \simeq 0.75$

- BCS regime : $\Delta_{\infty} = \frac{2\pi}{m} |a_i| n$ for $T \stackrel{<}{\sim} (ma_i^2)^{-1}$
- BEC regime : $\Delta_{\infty}^2 = \frac{4\pi n}{m^2 a_i}$ for $T \stackrel{<}{\sim} (ma_i^2)^{-1}$
- Unitarity regime for $T \to T_c^+$: $\frac{\Delta_{\infty}}{E_F} \simeq 0.75$

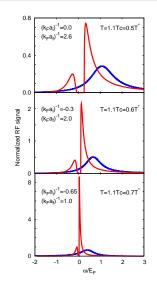
to be compared with the value $0.8E_F$ of the "pseudo gap" extracted from single-particle spectral function.

Δ_{∞} vs T at unitarity:



numerical calculationhigh-temperature expansion

Comparison of DOS+AL with BCS-RPA when $T_c \leq T \leq T^*$:



— DOS+AL

BCS-RPA

(each curve with its own μ)

"Gedanken" experiment:

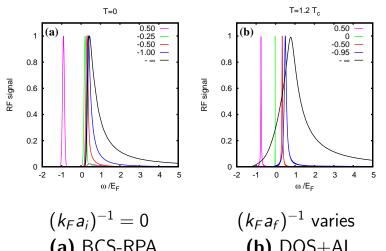
Once theory has been tested to work properly \implies

"Gedanken" experiment:

Once theory has been tested to work properly \implies do calculations where experiments cannot be done!

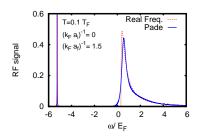
"Gedanken" experiment:

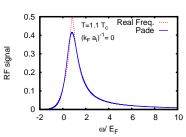
Once theory has been tested to work properly \implies do calculations where experiments cannot be done!



) DOS+AL

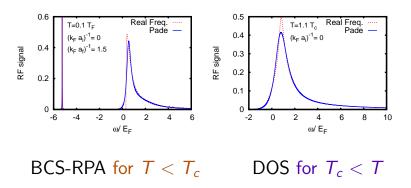
Checking Padé approximants for RF spectra both below and above T_c :





BCS-RPA for $T < T_c$ DOS for $T_c < T$

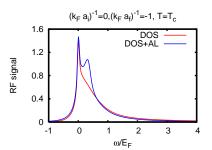
Checking Padé approximants for RF spectra both below and above T_c :



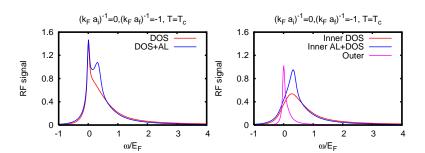
In both cases, confront with an independent calculation made directly on the real-frequency axis.

Interpreting the double-peak in Grimm's 2004 RF data as due to final-state effects & trap averaging:

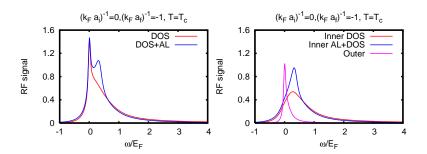
Interpreting the double-peak in Grimm's 2004 RF data as due to final-state effects & trap averaging:



Interpreting the double-peak in Grimm's 2004 RF data as due to final-state effects & trap averaging:

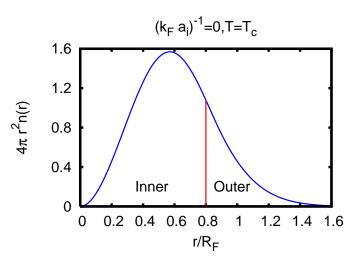


Interpreting the double-peak in Grimm's 2004 RF data as due to final-state effects & trap averaging:



In the "inner part" of the trap final-state effects (DOS + AL) make it visible the right peak!

Boundary between the "inner" and "outer" parts of the trap:



Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.

- Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.
- Arr There exists a competition between pairing-gap (\longrightarrow) and excitonic (\longleftarrow) effects.

- Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.
- Arr There exists a competition between pairing-gap (\longrightarrow) and excitonic (\longleftarrow) effects.
- ♣ BCS bubble ⊕ BCS-RPA diagrams at low T.

- Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.
- Arr There exists a competition between pairing-gap (\longrightarrow) and excitonic (\longleftarrow) effects.
- ♣ BCS bubble ⊕ BCS-RPA diagrams at low T.
- \clubsuit DOS with pairing self-energy \bigoplus AL diagrams above T_c (possibly needed also below T_c).

- Inclusion of final-state effects is essential for a correct understanding of the RF spectra of ultra-cold Fermi atoms.
- ♣ There exists a competition between pairing-gap (→) and excitonic (←) effects.
- ♣ BCS bubble ⊕ BCS-RPA diagrams at low T.
- \clubsuit DOS with pairing self-energy \bigoplus AL diagrams above T_c (possibly needed also below T_c).
- Extract from RF spectra information about Tan's contact intensity.

