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What we want to study: !
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Superfluid transition of Fermi gases 

within the Mean-Field Theory 

Medium-Induced Interaction 

beyond BCS predictions 

: Gorkov—Melik-Barkhudarov (GMB) correction 

(3D, 2D, …) in Optical Lattices 

(weak coupling regime) 

(many-body effect) 

(Two component) 
(Attractive interaction) 
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Medium effect in FREE gases!

Correction due to a Medium effect: 

Sá de Melo et al., PRL 71, 3202 (1993). 

Stoof et al., PRL 76, 10 (1996). 

Gorgov and Melik-Barkhudarov, Sov. Phys. JETP 13, 1018 (1961). 

kBT (0)
c =

8γ

πe2
εF exp

(
− π

2kF |a|

)
BCS result in vacuum : 

: 2nd order correction to the interaction. 

Heiselberg et al., PRL 85, 2418 (2000). 

Gorkov—Melik-Barkhudarov (GMB) correction 

U0 =
4π!
m

a

T (0)
c

Tc
= (4e)1/3 ≈ 2.22
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kF |a|→ kF |a|(1 + δkF |a|)

Tc → eδTc

: 2nd order correction to interaction 

: varies sensitively with the correction 

The difference could be even more dramatic. 

Superfluidity in optical lattices?!

Indirect experimental evidence: 
J. K. Chin, D. E. Miller, Y. Liu, C. Stan, W. Setiawan,  
C. Sanner, K. Xu, and  W. Ketterle, Nature 443, 961 (2006): 

Q. Medium effects in optical lattices?  

Tc ∝ exp
(
− π

2kF |a|

)
: correction changes the prefactor. 

~ long range order? 
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Gorkov—Melik-Barkhudarov correction!

Physical interpretation p

−p

−k

k

q

p + k + q

H. Heiselberg, C. H. Pethick, H. Smith, 
and L. Viverit, PRL 85, 2418 (2000). 

C. J. Pethick and H. Smith 2008. 

Two fermions in the medium  
≠ two fermions in vacuo. 

“medium-induced interaction”


p

−kq

p + k + q

−p

k

p + k + q

q

Scattering in the medium: 



Department of Applied Physics, Helsinki University of Technology 

Induced Interaction calculation!

Uind(p,k) = −U2
0

∫
dq

(2π)D

f↑,p+k+q − f↓,q

ξ↑(p + k + q)− ξ↓(q) fσ,k =
1

1 + exp [βξσ(k)]

ξσ(k) = εσ(k)− µσ

Induced interaction:  

〈Uind〉 =
1

|S↑||S↓|

∫

S↑

dSp

∫

S↓

dSkUind(p,k)

Assume only the momenta at the Fermi surfaces contribute:  

: effective interaction replacing U0 

Effective interaction:  

TWO INTERESTING FEATURES 

Ueff = U0 + 〈Uind〉



Induced Interaction: continued!
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1. Lindhard function (static) – susceptibility for non-interacting case 

Uind(p,k) = −U2
0

∫
dq

(2π)D

f↑,p+k+q − f↓,q

ξ↑(p + k + q)− ξ↓(q)

2. Perfect screening occurs at large interactions. 

POSITIVE : screens the negative interatomic interaction U0 

suppresses TC or the order parameter.  

Ueff = Uc + 〈Uind〉 = 0 - parameter space of validity 

At this large induced interaction, a RPA charge susceptibility can diverge. 

χRPA =
χ0

1 + U0χ0
→∞ - connection to other physics. 

(Charge density waves) 

p + k + qq



Mean-Field calculations!
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Hubbard Hamiltonian: 

Energy dispersion of 
non-interacting system 

εσ(k) = 2
∑

α

tσα [1− cos(kα)]

U → Ueff

U → U0

: the effective interaction with the GMB correction. 

Mean-Field approximation: 

HMF =
∑

k

(
ξ↑k ĉ†↑k ĉ↑k + ξ↓k ĉ†↓k ĉ↓k + ∆ĉ†↑k ĉ†↓−k + ∆ĉ↓−k ĉ↑k

)
− ∆2

U

: the usual BCS calculations 

H = −
∑

σα

∑

iα

tσα(ĉ†σ,iα+1ĉσ,iα + h.c.) + U
∑

i

n̂↑in̂↓i − µ
∑

σ,i

n̂σi

α ∈ {x, y, z}

The zero temperature order parameter Δ is calculated. 

∆ = U〈ĉ†↑iĉ
†
↓i〉



Mean-Field calculations!
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Minimization of Free Energy:  

Ω = −∆2

U
+

∫
dk

(2π)D

(
ξ↓(−k) + E−(k)− 1

β
ln(1 + e−βE+(k))(1 + eβE−(k))

)

E±(k) =
ξ↑(k)− ξ↓(−k)

2
±

√(
ξ↑(k) + ξ↓(−k)

2

)2

+ ∆2

 : Perfectly balanced gases are considered. 

Effective interaction Ueff = U0 + 〈Uind〉

µ↑ = µ↓

Numerical Integrations: Monte Carlo algorithm is used. 

T.K. Koponen, T. Paananen, J.-P. Martikainen, and P. Törmä, PRL 99, 120403 (2007). 
T.K. Koponen, T. Paananen, J.-P. Martikainen, M.R. Bakhtiari, and P. Törmä, NJP 10, 045104 (2008). 



Δ versus TC!
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The zero temperature order parameter Δ is calculated instead of TC. 

Both are equivalent in the weak coupling regime. 
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3D Lattices: Induced Interaction!
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Induced interaction strength increases as chemical potential increases. 

Half-filling 

Ueff decreases as µ increases. 

Uind(p,k) = −U2
0

∫
dq

(2π)D

f↑,p+k+q − f↓,q

ξ↑(p + k + q)− ξ↓(q)
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|U0| < |Uc| for all µ. 

(U0 = −3t, T = 0)
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3D Lattices: order parameter (T=0)!
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The order parameter is suppressed much beyond the factor 2.22.  

half filling 

As the filling factor increases, 
correction effect becomes larger. 

cf.) 1/D correction at high dimension 
[van Dongen, PRL 67, 757 (1991)] 

T 0
c /Tc ∼ O(1)

BCS 

GMB 

∆BCS

∆GMB
∼ 2.22

∆BCS

∆GMB
∼ 5

∆BCS

∆GMB
∼ 25

at low density limit.  

at µ = 4t. 

at half filling. 

(U0 = −3t, T = 0)
3D van hove singularity 



2D Lattices: induced interaction!
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Induced interaction strength increases as chemical potential increases, but … 

Uind(p,k) = −U2
0

∫
dq

(2π)D

f↑,p+k+q − f↓,q

ξ↑(p + k + q)− ξ↓(q)

… induced interaction diverges at half filling.  

(U0 = −1.5t, T = 0)

Half-filling 
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2D Lattices: order parameter (T=0)!
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- Comparisons with QMC 

At quarter filling and U0=-4t, 
[PRL 62, 1407 (1989); PRL 66, 946 (1991)] 
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As µ increases, 
correction effect becomes larger. 

BCS 

GMB 

- Effect of GMB correction 

∆BCS

∆GMB
∼ 7 at µ = 3t. 

1. Decrease near half filling 

[PRL 62, 1407 (1989)] 

2. Quantitative comparison  

GMB correction: 

kBTc ∼ 0.05t

kBTc ∼ 0.02t
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2D Lattices : divergence at half filling !
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Fermi surface nesting: 

Divergence of the Lindhard function 
signature of CDW 

Superfluidity and CDW coexist in the ground state  
at half filling in 2D lattices. 
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!=4.0

!=3.995

!=3.99

!=3.98 Uind(p,k) = −U2
0

∫
dq

(2π)D

f↑,p+k+q − f↓,q

ξ↑(p + k + q)− ξ↓(q)

The induced interaction diverges at half filling at T=0.  

p + k + qq

ex. 1D: 

p + k ∼ 0

p + k ∼ 2kF

:constant 



Lattice Anisotropy: crossover from 3D to 1D!
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3D 1D 

Induced Interaction increases as 
the lattice goes toward quasi 1D. 

Kinks are found at two points of 
changes in Fermi surface shapes. 

t̃ = 0.5

t̃ = 0.25

The surface opens:  
van Hove singularity 

Quasi 1D shapes start to develop. 

: Fermi surface nesting occurs. 
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Lattice Anisotropy: crossover from 3D to 1D!
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3D 1D 

∆→ 0

However, the theory fails at 1D limit. 
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The order parameter decreases  
much beyond the BCS prediction.  

U0 = −3t
µ = 2t

Uind diverges in 1D lattices. 

Ueff = 0 at some point: 

In quasi 1D lattices, finite gap exists. 

( incorrect! ) 

(Larkin and Sak, PRL 1977; PRB 1978.) 



Summary!
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The presence of the optical lattice 
significantly enhances the effect of  
induced interactions on the BCS 
superfluidity.   

The induced interaction correction extends the applicability of the mean-field 
calculations in lower dimensions. 

- Predictions closer to QMC values in 2D lattices 

- Divergence due to Fermi surface nesting : connection to different physics 
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∆corr ! ∆BCS


