Fluids with dipolar coupling

ORosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. **30**, 671 (1967)

FerMix 2009 Meeting, Trento

A "Quantum Ferrofluid" Experiments with dipolar BECs

Jonas Metz, Ashok Mohapatra, Stefan Müller, Thierry Lahaye, <u>Axel Griesmaier</u>, Tilman Pfau

Universität Stuttgart, Germany

5. Physikalisches Institut

Dipolar Gases Team

Members 2009:

Ashok Mohapatra Jonas Metz Stefan Müller Yong Wan Axel Griesmaier Tilman Pfau

Former members:

Thierry Lahaye Marco Fattori Jürgen Stuhler Tobias Koch Bernd Fröhlich

Theory: L. Santos, S. Giovanazzi, M. Ueda, Y. Kawaguchi, H. Saito

Trento 2009

"Experiments with dipolar BECs"

Outline

A quantum ferrofluid Nature 448, 672 (2007)

Stability of a dipolar condensate Nature Physics 4, 218 (2008)

d-wave collapse Phys. Rev. Lett. 101, 080401 (2008),

Trento 2009

"Experiments with dipolar BECs"

Interactions of ultra cold atoms

New effects in dipolar quantum gases

Iong range

- Structured superfluid phases
- «checkerboard» (isolating, one atom every second site) e.g., K. Góral *et al.*, PRL **88**, 170406 (2002).
- Tunneling dynamics & ground state in double/triple well potentials

anisotropy

- roton in the excitation spectrum L. Santos *et al.*, PRL **90**, 250403 (2003).
- new equilibrium shapes
 S. Ronen, D. C. E. Bortolotti, and J. L. Bohn, PRL 98, 030406 (2007);
 O. Dutta and P. Meystre, PRA 75, 053604 (2007).

multidimensional solitons P. Pedri and L. Santos, PRL 95, 200404 (2005); I. Tikhonenkov et al. PRL 100, 090406 (2008).

Iarge spin S=3

- Rich **phase diagram** for a S=3 spinor condensate
 - L. Santos and T. Pfau, PRL. 96, 190404 (2005)
 - L. Santos, M. Fattori, J. Stuhler, T. Pfau, PRA 75, 053606 (2007)

Review: T Lahaye et al. arXiv:0905.0386v1 (2008)

Trento 2009

"Experiments with dipolar BECs"

Dipolar interactions in a condensate

Gross-Pitaevskii equation for the order parameter:

 $i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\Delta\psi + \left(V_{\text{ext}} + g|\psi|^2 + \Phi_{\text{dd}}(\boldsymbol{r}, t)\right)\psi$

polarized sample

$$\Phi_{\rm dd}(\boldsymbol{r},t) = \int |\psi(\boldsymbol{r}',t)|^2 U_{\rm dd}(\boldsymbol{r}-\boldsymbol{r}') \,\mathrm{d}^3 r'$$
$$U_{\rm dd}(\boldsymbol{r}) = \frac{\mu_0 \mu^2}{4\pi} \frac{1-3\cos^2\theta}{r^3}$$

Dipolar interaction: NON-LOCAL & ANISOTROPIC term

 \rightarrow elongation of a polarized dipolar condensate

Trento 2009

"Experiments with dipolar BECs"

perturbative effect of DDI

Expansion of a dipolar BEC

Energy scales connected with dd-interactions

Estimate for typical BECs $n \sim 10^{15} \text{ cm}^{-3} \rightarrow r \sim 100 \text{ nm}$

electric heteronuclear molecules in their ro-vib ground state (dipolar moment & stability) d ≈ 1Debye *magnetic* Chromium atoms

 $\mu \approx 6\mu_B$

Relative strength of the dipole-dipole interaction

dipolar parameter

$$\varepsilon_{dd} = \frac{\mu_0 \mu^2 m}{12\pi \hbar^2 a}$$

dipolar interaction

contact interaction

Spherical condensate becomes unstable for $\varepsilon_{dd} > 1$.

How to go beyond perturbative effects?

Trento 2009

"Experiments with dipolar BECs"

Feshbach tuning of the contact interaction

Strength of the dipole-dipole interaction

Feshbach tuning of ε_{dd}

Time of flight experiments for various ε_{dd}

Strong dipolar effect $\epsilon_{dd} \sim 1$

3.5

perturbative effect of DDI

Aspect ratio as a function of ε_{dd}

• **Dipolar interactions:** elongation $al\vec{B}g$

How to go beyond ε_{dd} ~ 1 ?
→ Stability of a condensate

with partially attractive interactions?

Trento 2009

"Experiments with dipolar BECs"

Stabilzation of a dipolar condensate

Experimental setup

How to vary the trap aspect ratio?
Superimpose an optical lattice onto the ODT

A purely dipolar quantum gas

(i) Create a condensate in a trap with aspect ratio λ (ii) Reduce the scattering length *a*

A condensate in an oblate trap is more stable!

Nature Physics 4, 218 (2008)

Trento 2009

"Experiments with dipolar BECs"

Stability criterion with dipole-dipole interaction

Gaussian Ansatz:

$$\Phi(\rho, z) \propto \left(\frac{1}{\sigma_{\rho}^2 \sigma_z}\right)^{1/2} \exp\left[-\frac{\rho^2}{2 \sigma_{\rho}^2} + \frac{z^2}{2 \sigma_z^2}\right]$$

Gross-Pitaevskii energy functional:

$$E[\Phi] = \int d^3r \left[\text{kin.} + \text{trap} + \underbrace{\text{contact} + U_{\text{dd}}}_{\propto \frac{1}{\sigma_{\rho}^2 \sigma_z}} \left[\frac{1}{\epsilon_{\text{dd}}} - f(\frac{\sigma_{\rho}}{\sigma_z}) \right]$$

• the local minimum vanishes for $a \le a_{crit}$: (example $\lambda = \omega_z / \omega_\rho = 10$)

Exact stability diagram

• a_{crit} as a function of the trap aspect ratio λ (N = 20,($\bar{\omega} \simeq 2\pi \times 800 \, \text{Hz}$

Full solution of the 3D GPE (John Bohn's group, JILA)

How does the cloud collapse?

Trento 2009

"Experiments with dipolar BECs"

Initiating the collapse

Fast quench of *a* to $a_{f} < a_{crit}$.

Trento 2009

"Experiments with dipolar BECs"

Theory vs. practice

Trento 2009

"Experiments with dipolar BECs"

Dipolar collapse (theory vs. exp.)

Phys. Rev. Lett. **101**, 080401 (2008) Theory by Masahito Ueda's group, Tokyo

No free parameters ... but correct evolution of the magnetic field!

Trento 2009

"Experiments with dipolar BECs"

Experiment vs. Simulation

Trento 2009

"Experiments with dipolar BECs"

Collapse in a pancake shaped trap

-Dipole-dipole interaction is mainly repulsive in an oblate trap, without s-wave scattering, the BEC would be stable

Collapse happens at negative scattering length

Trento 2009

"Experiments with dipolar BECs"

D-wave symmetry

D-wave symmetry of the collapse

Recover 3D structure from 2D projection

Iso-densitv surfaces

Reminiscent of the angular $(1-3\cos^2\theta)$ dependence of the underlying interaction (*d*-wave)

Trento 2009

"Experiments with dipolar BECs"

Axel Griesmaier, Stuttgart (Germany)

d-orbital

Does coherence survive the collapse? Excellent agreement with GPE simulation suggests: "YES"

Direct observation of coherence by interference would give better insight

Coherence of the remnant cloud

Coherence can survive even violent processes like a collapse

Future directions: Bose-Fermi mixtures

Motivation:

- Fermion mediated boson-boson interaction could lead to a stabilization of density waves

O. Dutta, R. Kanamoto, and P. Meystre, PRL 99, 110404 (2007)

- Existence of the fermionic isotope ⁵³Cr (laser cooled in Paris: R. Chicireanu *et al.*, PRA **73** 053406 (2006))

Trento 2009

"Experiments with dipolar BECs"

