Ultracold Heteronuclear Fermi-Fermi Molecules

Kai Dieckmann

Ludwig-Maximilians-University of Munich Max-Planck-Institute for Quantum Optics, Garching Germany

Trento, June 3rd, 2009

€€€:

Max-Planck-Society Munich Center for Advanced Photonics (MAP) DFG Research Unit FOR 801 "Strong Correlations in Multiflavor Ultracold Quantum Gases"

Polar Molecules

Cold polar molecules:

¹³³Cs – ⁷Li Bose-Bose mixture:

Single step of photoassociation process J. Deiglmayr et al., PRL **101**, 133004 (2008)

⁸⁷Rb – ⁴⁰K Bose-Fermi mixture:

Single step of stimulated Raman transfer

🚺 K.-K. Ni et al., Science **322**, 231 (2008)

Perspective: longlived BEC of ground state molecules with anisotropic, long-range interaction

Max-Planck Instutute of Quantum Optics, Garching Ludwig-Maximilians-University of Munich, Germany

Dipole Moments of Ground State Molecules

Dipole moments of vibrational ground state: v=0

Mixture	[Debeye]
Li-Na	0.56
Li-K	3.6
Li-Rb	4.2
Li-Cs	5.5
Na-K	2.8
Na-Rb	3.3
Na-Cs	4.6
K-Rb	0.6
K-Cs	1.9
Rb-Cs	1.2

10 M. Aymar and O. Dulieu, J. Chem.Phys., 122, 204302 (2005)

3.6 Debeye \triangleq 13kHz interaction energy for lattice spacing of 532 nm.

Strongly Interacting Mixture

Strongly interacting Fermi gases:

- Imbalanced Fermi gases
 - 📵 Y. Shin et. al, PRL **97**, 030401 (2006)
 - 0 G. B. Partridge, Science **311**, 503 (2006)

Fulde-Ferrell-Larkin-Ovchinnikov states (FFLO) in 1D traps or 1D optical lattices

 crystalline phase, BEC-BCS crossover, resonant pairing, ...

 Theoretical calculations on FFLO in 1D: A.E.Feiguin , F. Heidrich-Meisner, PRA. 220508 (2007) G. Orso, PRL 98, 070402 (2008)
 G. Batrouni, PRL 100, 116405 (2008)
 M. Tezuka et al., PRL 100, 110403 (2008)
 M. Rizzi et al., PRB 77, 245105 (2008)
 A. Lüscher et al., PRA 78, 013637 (2008)
 X.-J. Liu, PRA 78, 023601 (2008)

Experimental possibilities of heteronuclear system:

Independent control of optical potentials, i.e. densities

- Selective evaporative cooling, adiabatic expansion
- tuning of effective mass
- "Magic" wavelength

Long Lifetime of Fermions at FBR

⁶Li,
$$|\uparrow\rangle + |\downarrow\rangle$$
 @ 834 G FBR : $\tau \approx 1$ s

Vibrational relaxation suppressed due to Pauli exclusion principle

D.S.Petrov et al., 2003 onwards

D. Petrov's talk

Triple Degenerate Mixture

Why three species?

Fermions in identical states do not interact

Use of mixtures for sympathetic cooling

Amsterdam, Innsbruck: Li: $|1\rangle \& |2\rangle \& K |9/2; -9/2\rangle$

• Fermi-Fermi-Bose mixture

Munich:

sympathetic cooling with large and stable ⁸⁷Rb reservoir

Advantages:

- No doubled Pauli blocking when cooling into quantum degeneracy
- Fermions are not evaporated: lower initial fermion atom numbers are sufficient
- Flexibility: to study Fermi-Fermi and Fermi-Bose mixtures

7

Laser Systems

Triple MOT

Concept of the Machine

Science Chamber

Magnetic Trapping

Magnetically trappable states:

• ⁶Li: $|\frac{3}{2};\frac{3}{2}\rangle$, $|\frac{3}{2};\frac{1}{2}\rangle$ for B<27G additionally $|\frac{1}{2};-\frac{1}{2}\rangle$ • ⁴⁰K: $|\frac{9}{2};\frac{9}{2}\rangle$, $|\frac{9}{2};\frac{7}{2}\rangle$, $|\frac{9}{2};\frac{5}{2}\rangle$, $|\frac{9}{2};\frac{3}{2}\rangle$, $|\frac{9}{2};\frac{1}{2}\rangle$ $|\frac{7}{2};-\frac{7}{2}\rangle$, $|\frac{7}{2};-\frac{5}{2}\rangle$, $|\frac{7}{2};-\frac{3}{2}\rangle$, $|\frac{7}{2};-\frac{1}{2}\rangle$ • ⁸⁷Rb: $|1;-1\rangle$, $|2;2\rangle$, $|2;1\rangle$ at high B fields additionally $|2;0\rangle$

Magnetic Trapping

Stable mixtures:

Selection rule for spin exchange collisions:

$$\Delta F_z = \Delta \left(m_F^{\rm Li} + m_F^{\rm K} + m_F^{\rm Rb} \right) = 0$$

• Stable mixture (doubly polarized states):

Li
$$\left|\frac{3}{2}; \frac{3}{2}\right\rangle$$
 & K $\left|\frac{9}{2}; \frac{9}{2}\right\rangle$ & Rb $\left|2; 2\right\rangle$

• Additional stable mixture for Li-Rb experiments (maximally stretched states):

$$\text{Li} \left| \frac{1}{2}; -\frac{1}{2} \right\rangle \& \text{Rb} \left| 1; -1 \right\rangle$$

But unstable for K-Rb and in Li-K-Rb mixture (inverted HFS of ⁴⁰K).

• All states trappable in optical dipole trap. Interesting stable examples:

$$\operatorname{Li} \left| \frac{1}{2}; \frac{1}{2} \right\rangle \& \mathbb{K} \left| \frac{9}{2}; m_{F} \right\rangle \qquad \qquad \operatorname{Li} \left| \frac{1}{2}; m_{F} \right\rangle \& \mathbb{K} \left| \frac{9}{2}; -\frac{9}{2} \right\rangle$$

Max-Planck Instutute of Quantum Optics, Garching Ludwig-Maximilians-University of Munich, Germany

Challenges & Measures

- Li: low mass and high MOT temperature
 - Large diameter differential pumping hole
 - Special QUIC loading mechanism
 - Li: Compressed MOT, Rb: D-MOT

Li C-MOT & Rb D-MOT

⁶Li

Additional compression and cooling sequences before magnetic capture:

Rb: density increase: x3

⁸⁷Rb

Max-Planck Instutute of Quantum Optics, Garching Ludwig-Maximilians-University of Munich, Germany

Challenges & Measures

- Li: low mass and high MOT temperature
 - Large diameter differential pumping hole
 - Special QUIC loading mechanism
 - Li: Compressed MOT, Rb: D-MOT
- Small fermion atom numbers compared to Rb
 - Continuous state cleaning of Rb
- Small s-wave scattering wavelength: $|a_T(Li, Rb)| = 20^{+9}_{-6} a_0$
 - Rb dark MOT (2005)
 - 63 s evaporation
 - Continuous removal of high energy Li from trap
 - Catalytic cooling of Li by K

Catalytic Cooling I

Catalytic Cooling II

Triple Degeneracy

M.Taglieber, A.-C. Voigt, T. Aoki, T.W. Hänsch, and K. Dieckmann, PRL 100, 010401 (2008)

First quantum degenerate mixture of 3 different atomic species

Max-Planck Instutute of Quantum Optics, Garching Ludwig-Maximilians-University of Munich, Germany

G

⁶Li-⁴⁰K Molecules

Li-K Feshbach Resonances in Innsbruck

Loss measurement in non-degenerate mixture: 10 E. Wille et al., PRL 100, 053201 (2008)

		Exper	iment	ABM	Couple	d channels	
i, j	$M_{\rm F}$	B_0	ΔB	B_0	B_0	$\Delta B_{\rm s}$	type
		(mT)	(mT)	(mT)	(mT)	(mT)	
2, 1	-5	21.56^{a}	0.17	21.67	21.56	0.025	s
1, 1	-4	15.76	0.17	15.84	15.82	0.015	s
1, 1	-4	16.82	0.12	16.92	16.82	0.010	S
1,1	-4	24.91	1.07	24.43	24.95	-	p
1, 2	-3	1.61	0.38	1.39	1.05	-	p
1, 2	-3	14.92	0.12	14.97	15.02	0.028	s
1, 2	-3	15.95^{a}	0.17	15.95	15.96	0.045	s
1, 2	-3	16.59	0.06	16.68	16.59	0.0001	s
1, 2	-3	26.28	1.07	26.07	26.20	-	p
1, 3	-2	not ob	served	1.75	1.35	-	p
1, 3	-2	14.17	0.14	14.25	14.30	0.036	s
1, 3	-2	15.49	0.20	15.46	15.51	0.081	S
1, 3	-2	16.27	0.17	16.33	16.29	0.060	s
1, 3	-2	27.09	1.38	27.40	27.15	-	p

Molecules in Munich

Tiemann: Not predicted in Revised theory

Molecules Munich

s-wave resonances expected to be narrow , close channel dominated

Optical Trap and Magn. Coils

Ambient Magnetic Field

Magnetic Field Calibration

K $|9/2,9/2> \rightarrow |9/2,7/2>$ rf transition, field sensitivity 180.3 kHz/G

Long term stability: <7mG, (compare calibrations after six weeks)

Mapping the Resonance via Lifetime

Typical initial conditions:

⁶Li:
$$|1/2,+1/2> n_{Li} \approx 2 \cdot 10^{13} cm^{-3}$$
 $T/T_F^{Li} = 0.6$
⁴⁰K: $|9/2,-5/2> n_K \approx 1 \cdot 10^{14} cm^{-3}$ $T/T_F^{Li} = 0.4$

Feshbach Association Ramp Speed

- 1/e inverse ramp speed 0.3 ms/G
- use in experiment 1ms/G

Feshbach Association / Dissociation

Max-Planck Instutute of Quantum Optics, Garching Ludwig-Maximilians-University of Munich, Germany

ABM Model M= -2

• Magnetic moment of molecular state near zero

Direct Imaging of Heteronuclear Molecules

 Stern-Gerlach pulse: ~ 570µs at 157 G/cm

• Simultaneous high field imaging of atoms and molecules

📵 J. J. Zirbel et al., PRL, 100, 143201 (2008).

Lifetimes

study strongly interacting regime (width ≈ 40 mG)
creation of diploar molecules

Suppression of losses close to resonance observed

- Proposed decay mechanisms:
 - Spontaneous molecular spin relaxation
 - 📵 T. Köhler et al., PRL **94**, 020402 (2005)
 - 📵 J.L. Roberts et al., PRL **85**, 728 (2000)
 - Vibrational relaxation
 - D. Petrov et al., J. Phys. B:
 At. Mol. Opt. Phys. 38 645 (2005)
 - Size of closed channel?

$$g_0 \approx \mathbf{E}_{\mathrm{F}} \approx k_B \cdot 1 \, \mu \mathrm{K}$$

Signal of Elastic Scattering Length

Aspect ratio of atomic cloud in time of flight (no molecule production):

Comparison of Heteronuclear Molecules

	Bose + Fermi	Bose + Bose		Fermi + Fermi	
species	⁴⁰ K + ⁸⁷ Rb	⁸⁵ Rb + ⁸⁷ Rb	⁴¹ K + ⁸⁷ Rb	⁶ Li + ⁴⁰ K	
lifetime	100 ms	< 1 ms	60 µs	>100 ms	
# of molecules	15000	25000	12000	40000	
Density (cm ⁻³)	1 x 10 ¹²	1 x 10 ¹⁴	5 x 10 ¹¹	5 x 10 ¹²	
Dipole moment (Debye)	0.6	-	0.6	3.6	

J.J. Zirbel et al., PRL 100, 143201 (2008)
 S.B. Papp and C.E. Wieman, PRL 97, 180404 (2006)
 C. Weber et al., arXiv:0808.4077v1 (29 Aug 2008)

LiK Excited Molecular Potentials

Also available: ${}^{1}\Pi^{+}$, ${}^{3}\Pi^{+}$, ${}^{1}\Delta^{+}$, ${}^{3}\Delta^{+}$

Transfer to Ground State

Morse potentials without perturbation:

- KRb: mixing of (2) $^{3}\Sigma$ and (1) $^{1}\Pi$ states
- LiK: mixed singlet triplet character of initial state
- Repulsive C₆ for potentials connecting to Li asymptote

Summary & Outlook

Summary:

- Triple degenerate mixture, catalytic cooling
- Feshbach resonances of degenerate Fermi-Fermi mixture
- LiK Molecules
- Pauli suppression close to resonance observed

Outlook:

- Measure scattering length to locate resonance
- Heteronuclear molecules
 - BEC of heteronuclear molecules
 - Dipolar ground state molecules
- Fermi-Fermi mixture in the strongly interacting regime
 - Narrow resonance closed channel dominated
 - Long lifetime on resonance

The Team 2008

Thank you...