“Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas”

Wolfgang Ketterle
Massachusetts Institute of Technology
MIT-Harvard Center for Ultracold Atoms

3/4/04
Workshop on Ultracold Fermi Gases, Levico
Quantum degenerate Na$_2$ molecules

Takashi Mukaiyama, Kaiwen Xu, Jamil Abo-Shaeer, Jit Kee Chin, Daniel Miller, W.K.
The new cold frontier: molecules

Molecule

Two atoms

Magnetic field

Feshbach resonance

E

atoms

cells

molecules
Zero energy of the condensate

Feshbach resonance

Zeeman tuning a bound molecular state to zero energy!

Energy

0

Bound molecular states

Theory:
Stwalley 1976
Verhaar 1993

Exp:
MIT, Texas 1998
molecule atoms

E Feshbach resonance

molecule atoms

Bosons: Boulder, Garching, Innsbruck, MIT
Fermions: Boulder, Rice, Paris, Innsbruck, MIT
Na condensate in a single beam optical dipole trap

$|F=1, m=1>$

$N \sim 3 \times 10^6$

$n \sim 4 \times 10^{14} \text{ cm}^{-3}$

$\omega_{\text{trap}} \sim 2\pi \times (290 \text{ Hz}, 290 \text{ Hz}, 2.5 \text{ Hz})$

Trap depth $\sim 1.4 \mu\text{K}$

$B_{\text{FB}} \sim 907 \text{ Gauss}$

$\Delta B \sim 1.0 \text{ Gauss}$
Atom-Molecule Collision

\[\frac{\dot{N}_m}{N_m} = -K_{am} \cdot n_a \]

\[K_{am} = 6.4 \times 10^{-11} \text{ cm}^3 / \text{sec} \]

\[\tau \sim 92 \mu\text{sec} \]
Molecules with phase-space density of $20!$ is critical phase-space density for BEC.

Conversion of gas of coherent atoms into a gas of coherent molecules.
$\delta E = \tau_p \times \Delta \mu \dot{B}$

(τ_p : predissociation time)
\[\delta E = \tau_p \times \Delta \mu \dot{B} \]

(\(\tau_p \): predissociation time)

However:

\[\tau_p \propto \sqrt{\delta E} \]

Wigner threshold law
Quantum degeneracy in fermions
Quantum Degenerate Gases

- non-interacting fermions: Pauli blocking
- interacting fermions: BCS-like superfluidity
- mixtures of Bose and Fermi gases
Quantum degenerate fermions

Potassium 40K
Boulder
Florence

Lithium 6Li
Rice
Paris
Duke
MIT
Innsbruck

Lots of work in progress: chromium, strontium
Sodium - Lithium Mixture

Na $F = 2$ condensate as refrigerator
cool Li $F = 3/2$ (state $|6\rangle$) in a magnetic trap -
20s forced evaporation

10^7 atoms in BEC (w/o Li)
50 10^6 Li atoms at $\frac{T}{T_F} < 0.3$

Preparation of an interacting 6Li system

Setup:

Optical trapping:
9 W @ 1064 nm

$\omega = 2\pi \times (16,16, 0.19)\ kHz$

$E_{\text{trap}} = 800\ \mu K$
Interacting Fermions

Spin-mixture of Spin $\hat{\mathcal{I}}$ and \mathcal{D}

Without interaction:

$$a = 0$$
Interacting Fermions

Spin-mixture of Spin \uparrow and \downarrow

With attractive interaction:
\[a < 0 \]

BCS-Transition
Condensation of long-range Cooper pairs

\[T_C \approx 0.5 T_F e^{-\frac{2k_F \pi}{|a|}} \]

We want a large and negative scattering length

Promising candidate: 6Li, $a_T = -2100 a_0$
Interacting Fermions

Spin-mixture of Spin \uparrow and \downarrow

With repulsive interaction:

\[a > 0 \]

A bound state appears!

\[E_B = -\frac{\hbar^2}{2ma^2} \]

per atom
Interacting Fermions

Spin-mixture of Spin \uparrow and \downarrow

With repulsive interaction: $a > 0$

BEC-Transition
Condensation of tightly bound Fermion pairs

$$T_C = 0.91 \, \hbar \omega \, N_{\text{mol}}^{1/3}$$
$$= 0.5 \, T_F$$

$$E_B = -\frac{\hbar^2}{2ma^2}$$

per atom

A bound state appears!
The BEC-BCS Crossover

BEC of Molecules: Condensation of tightly bound fermion pairs
BCS-limit: Condensation of long-range Cooper pairs

\[a > 0 \quad a < 0 \]

Energy
Magnetic Field
Molecules
Atoms

\[B_0 \]
Direct evaporation of ^6Li molecules

Long lifetime of Lithium molecules! (ENS, Rice)

- Directly evaporate at large and positive a
- Form molecules by three-body recombination when $kT \lesssim E_B$

$$a > 0$$

$$E_B = -\frac{\hbar^2}{2ma^2}$$
Direct evaporation of ^6Li molecules

Long lifetime of Lithium molecules! (ENS, Rice)

\[\dot{\gamma} \text{ Directly evaporate at large and positive } a \]

\[\dot{\gamma} \text{ Form molecules by three-body recombination when } kT \lesssim E_B \]

\[a > 0 \]

Cool further
\[\Rightarrow \text{BEC of molecules!} \]

\[E_B = -\frac{\hbar^2}{2ma^2} \]
BEC of Molecules

Up to 3 million condensed molecules

Also: Boulder, Innsbruck, Paris

B = 745G
N_C/N = 45%

B = 797G
N_C/N = 87%
Direct Imaging of Molecules

Large size R of the molecules:

Excited state line-splitting: $\propto \hbar \Gamma (\lambda/R)^3$

For $R > \lambda = 100 \text{ nm}$ absorbs light resonant with the atomic transition:

Observations:
Around 770G 100% signal strength at 650G it is 50%
Lifetime of the Molecular BEC

tau1: 850 ms
tau2: 10 s
\[a \sim 22 / m \varepsilon = 22 / m R_e \sim e R \]

\[\sim \hbar^2 / m R_e^2 \]

\[\varepsilon_0 = \hbar^2 / ma^2 \]
Momentum of each atom $\frac{\hbar}{a}$

Relative wave function of the two blue atoms $\psi(r) \approx \sin(kr) \approx \sin(r/a)$

Probability to form molecule with size $R_e \approx |\psi(R_e)|^2 \approx (R_e/a)^2$

D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, preprint cond-mat/0309010
Crossover from a Degenerate Fermi Gas to a BEC of molecules

Recent results of the last two months:
• Innsbruck
• Boulder
• MIT
• Paris
Locating the Feshbach Resonance by Molecule Dissociation

\[B_0 = 822 \pm 3 \text{ G} \]

Dissociate Molecules after 10 ms time of flight in a 4 ms ramp (100 G/ms).

\[B_0 = 822 \pm 3 \text{ G} \]
Locating the Feshbach Resonance by Molecule Dissociation

$B_0 = 822 \pm 3 \text{ G}$

12.5 G/ms

100 G/ms

30 G/µs

$B_0 = 822 \pm 3 \text{ G}$
Strong Coupling Between Atoms and Molecules

- Produce Fermi Sea at 870 G
- Switch off magnetic field after different times of flight.
- Assuming Landau-Zener-model

\[e^{-c n \frac{n}{B}} \]

\[c = \frac{\pi \hbar}{2 \Delta \mu} |V|^2 \]

\[\dot{B} = 30 \text{ G/\mu s} \]

\[\Omega_R = \sqrt{|V|^2} \quad n = 6 \text{ MHz} \]
Crossover from a BEC to a DFG …and back
Produce Fermi sea at 920G and ramp in 500ms to final field

T = 0 Fermi cloud:

T = 0 BEC:

Innsbruck
Paris
How to detect Condensates of Pairs of Fermions?

\[a > 0 \quad a < 0 \]

Molecule \hspace{2cm} Long-range pair

\[\uparrow \quad \downarrow \]

Idea: Quickly ramp over resonance to rapidly transfer fermionic atom pairs into molecules

Is the ramp fast enough to neglect collisions or other dynamics?

Limitation:
Probably works only for next neighbors
Can only detect “molecular” pairs, not long-range Cooper pairs
Observation of Condensates!

Starting field: 900 G

Initial temperature: $T / T_F = 0.2$ $T / T_F = 0.1$ $T / T_F = 0.05$

Pair condensation above the Feshbach resonance

Claim for Cooper pair condensation

Condensate Fraction vs. hold time

$k_F|a| > 1$ from 720 G on
Condensate Fraction vs. temperature
„Phase diagram“ for pair condensation

Condensate Fraction at 820 G

Magnetic Field [G]

$k_F|a| > 1$

T/T_F
What’s going on?

Tentative interpretation:
High condensate fraction implies pre-existing molecules above the two-body resonance position – stabilized by the Fermi sea

Simple model, neglecting interactions

[Diagram with two inverted triangles, one filled with blue dots and the other with red dots]
What's going on?

Tentative interpretation:
High condensate fraction implies pre-existing molecules above the two-body resonance position – stabilized by the Fermi sea

Simple model, neglecting interactions

At \(T/T_F = 0.05 \): Pauli blocking factor \(10^{-16} \)
What’s going on?

Tentative interpretation:
High condensate fraction implies pre-existing molecules above the two-body resonance position – stabilized by the Fermi sea

Simple model, neglecting interactions
What’s going on?

Tentative interpretation:
High condensate fraction implies pre-existing molecules above the two-body resonance position – stabilized by the Fermi sea

Simple model, neglecting interactions
What's going on?

Tentative interpretation:
High condensate fraction implies pre-existing molecules above the two-body resonance position – stabilized by the Fermi sea.

BEC-BCS transition only occurs when
\[E_{\text{Mol}} \leq 2E_F \] or equivalently \(k_F |a| \leq 1 \)

Simple model, neglecting interactions.

Also: H. T. C. Stoof, preprint cond-mat/0402xxx
Prediction

Fermi sea "leaks" into molecule BEC:
\(\tilde{\gamma} \) \(k_F \) is reduced, cloud shrinks!
• None of the experimental results are inconsistent with the existence of a molecular condensate above the Feshbach resonance
• None of the experiments has conclusively identified any feature characteristic for the BCS regime, e.g. delocalization of pairs
• None of the experimental results are inconsistent with the existence of a molecular condensate above the Feshbach resonance
• None of the experiments has conclusively identified any feature characteristic for the BCS regime, e.g. delocalization of pairs
The Lithium Team

Claudiu A. Stan, Sebastian M.F. Raupach, W.K., Christian H. Schunck, Martin W. Zwierlein, Andrew J. Kerman

Not shown: Subhadeep Gupta, Zoran Hadzibabic